001002267 001__ 1002267
001002267 005__ 20231027114355.0
001002267 0247_ $$2doi$$a10.1038/s41612-023-00339-w
001002267 0247_ $$2Handle$$a2128/33939
001002267 0247_ $$2WOS$$aWOS:000936243600001
001002267 037__ $$aFZJ-2023-01249
001002267 041__ $$aEnglish
001002267 082__ $$a530
001002267 1001_ $$0P:(DE-Juel1)169305$$aWu, Xue$$b0
001002267 245__ $$aThe influence of the Asian summer monsoon on volcanic aerosol transport in the UTLS region
001002267 260__ $$aLondon$$bSpringer Nature$$c2023
001002267 3367_ $$2DRIVER$$aarticle
001002267 3367_ $$2DataCite$$aOutput Types/Journal article
001002267 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677051319_8709
001002267 3367_ $$2BibTeX$$aARTICLE
001002267 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001002267 3367_ $$00$$2EndNote$$aJournal Article
001002267 520__ $$aThis study analyses the influence of the Asian summer monsoon on volcanic aerosol transport. Realistic, altitude-resolved SO2 emissions of a middle-latitude volcanic eruption (Sarychev 2009) and a tropical volcanic eruption (Nabro 2011) were retrieved and used to initialize the simulations of the long-range transport and dispersion of the sulfate aerosol plumes. The barrier effect of the Asian summer monsoon anticyclone (ASMA) isolated the Sarychev eruption plume outside of the ASMA but constrained the Nabro eruption plume inside of the ASMA, which is most evident in the UTLS region between isotropic surfaces of 360–420 K. Meanwhile, the ASMA could transport a fraction of the plume outside of ASMA quasi-horizontally to the tropical tropopause layer along the southeastern periphery of the anticyclonic circulation, and lift the volcanic plume inside the ASMA anticyclonically across the tropopause with an ascent rate of approximately 0.8 K/day. By enhancing the meridional transport in the UTLS region and lifting volcanic aerosols across the tropopause, the ASMA significantly expanded the potential effects of volcanic eruptions.
001002267 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001002267 536__ $$0G:(GEPRIS)410579391$$aDFG project 410579391 - Transportwege für Aerosol und Spurengase im Asiatischen Monsun in der oberen Troposphäre und unteren Stratosphäre (AeroTrac) (410579391)$$c410579391$$x1
001002267 588__ $$aDataset connected to DataCite
001002267 7001_ $$0P:(DE-HGF)0$$aQiao, Qi$$b1
001002267 7001_ $$0P:(DE-HGF)0$$aChen, Bing$$b2$$eCorresponding author
001002267 7001_ $$0P:(DE-HGF)0$$aWang, Xin$$b3
001002267 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b4
001002267 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b5
001002267 7001_ $$0P:(DE-HGF)0$$aTian, Yufang$$b6
001002267 7001_ $$0P:(DE-HGF)0$$aWang, Yinan$$b7
001002267 773__ $$0PERI:(DE-600)2925628-8$$a10.1038/s41612-023-00339-w$$gVol. 6, no. 1, p. 11$$n1$$p11$$tnpj climate and atmospheric science$$v6$$x2397-3722$$y2023
001002267 8564_ $$uhttps://juser.fz-juelich.de/record/1002267/files/s41612-023-00339-w.pdf$$yOpenAccess
001002267 909CO $$ooai:juser.fz-juelich.de:1002267$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001002267 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
001002267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b4$$kFZJ
001002267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b5$$kFZJ
001002267 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001002267 9141_ $$y2023
001002267 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-10
001002267 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001002267 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-10
001002267 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-10
001002267 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001002267 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-10
001002267 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:13:11Z
001002267 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:13:11Z
001002267 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:13:11Z
001002267 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNPJ CLIM ATMOS SCI : 2022$$d2023-10-27
001002267 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001002267 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001002267 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001002267 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001002267 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001002267 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNPJ CLIM ATMOS SCI : 2022$$d2023-10-27
001002267 920__ $$lyes
001002267 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001002267 980__ $$ajournal
001002267 980__ $$aVDB
001002267 980__ $$aUNRESTRICTED
001002267 980__ $$aI:(DE-Juel1)JSC-20090406
001002267 9801_ $$aFullTexts