001002270 001__ 1002270
001002270 005__ 20240712084509.0
001002270 0247_ $$2doi$$a10.1039/D2EE03215E
001002270 0247_ $$2ISSN$$a1754-5692
001002270 0247_ $$2ISSN$$a1754-5706
001002270 0247_ $$2Handle$$a2128/34421
001002270 0247_ $$2WOS$$aWOS:000945108000001
001002270 037__ $$aFZJ-2023-01252
001002270 082__ $$a690
001002270 1001_ $$0P:(DE-HGF)0$$aAmpelli, Claudio$$b0$$eCorresponding author
001002270 245__ $$aAn artificial leaf device built with earth-abundant materials for combined H2 production and storage as formate with efficiency > 10%
001002270 260__ $$aCambridge$$bRSC Publ.$$c2023
001002270 3367_ $$2DRIVER$$aarticle
001002270 3367_ $$2DataCite$$aOutput Types/Journal article
001002270 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684223879_18883
001002270 3367_ $$2BibTeX$$aARTICLE
001002270 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001002270 3367_ $$00$$2EndNote$$aJournal Article
001002270 520__ $$aA major challenge for achieving the energy transition and transforming the current energy model into distributed productionis the development of efficient artificial leaf-type devices capable of directly converting carbon dioxide (CO2), water andsunlight into sustainable fuels and chemicals under ambient conditions. These devices should avoid using critical rawmaterials to be sustainable and cost-competitive. We report top-level results for the first time in converting CO2 and H2O tofuels (formate and H2) using sunlight and electrodes based solely on earth-abundant materials. The cell provides a solar-tofuelefficiency of> 10 % combined with world-record current densities to comparable devices operating at roomtemperature, without adding sacrificial donors or electrical bias. In addition, we present the novel concept of producing atthe same time H2 and an H2-storage element (formate), the latter used to produce H2 when light is absent. This solutionallows continuous (24h) hydrogen production using an artificial-leaf device. For the first time, we show the feasibility of thissolution. The experimental results were obtained in an optimised, compact electrochemical flow cell, with electrodes basedon Cu-S and Ni-Fe-Zn oxide (for CO2 reduction and oxygen evolution reaction, respectively) supported on gas-diffusionsubstrates, integrated with a low-cost Si-based photovoltaic module. The cell design allows for easy scale-up and lowmanufacturing and operating costs. The cell operates at a current density of about 17 mA·cm–2 and a full-cell voltage of 2.5V (stable for at least ten hours and in on-off operations), providing formate productivity of 193 mol·h–1·cm–2, paving theway towards the implementation of affordable artificial-leaf type systems in the future energy scenario.
001002270 536__ $$0G:(DE-HGF)POF4-1214$$a1214 - Modules, stability, performance and specific applications (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001002270 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001002270 7001_ $$0P:(DE-HGF)0$$aGiusi, Daniele$$b1
001002270 7001_ $$0P:(DE-HGF)0$$aMiceli, Matteo$$b2
001002270 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, Tsvetelina$$b3
001002270 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b4
001002270 7001_ $$0P:(DE-Juel1)184652$$aChime, Ugochi$$b5
001002270 7001_ $$0P:(DE-Juel1)130212$$aAstakhov, Oleksandr$$b6
001002270 7001_ $$0P:(DE-HGF)0$$aMartin Fernandez, Antonio$$b7
001002270 7001_ $$0P:(DE-HGF)0$$aVeenstra, Florentine$$b8
001002270 7001_ $$0P:(DE-HGF)0$$aGarcés-Pineda, Felipe$$b9
001002270 7001_ $$0P:(DE-HGF)0$$aGonzalez-Cobos, Jesus$$b10
001002270 7001_ $$0P:(DE-HGF)0$$aGarcía-Tecedor, Miguel$$b11
001002270 7001_ $$0P:(DE-HGF)0$$aGimenez, Sixto$$b12
001002270 7001_ $$0P:(DE-HGF)0$$aJaegermann, W.$$b13
001002270 7001_ $$0P:(DE-HGF)0$$aCenti, Gabriele$$b14
001002270 7001_ $$0P:(DE-HGF)0$$aPérez-Ramírez, J.$$b15
001002270 7001_ $$0P:(DE-HGF)0$$aGalan-Mascaros, Jose$$b16
001002270 7001_ $$0P:(DE-HGF)0$$aPerathoner, Siglinda$$b17
001002270 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/D2EE03215E$$gp. 10.1039.D2EE03215E$$n4$$p1644-1661 $$tEnergy & environmental science$$v16$$x1754-5692$$y2023
001002270 8564_ $$uhttps://juser.fz-juelich.de/record/1002270/files/d2ee03215e.pdf$$yOpenAccess
001002270 909CO $$ooai:juser.fz-juelich.de:1002270$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001002270 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich$$b3$$kFZJ
001002270 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich$$b4$$kFZJ
001002270 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184652$$aForschungszentrum Jülich$$b5$$kFZJ
001002270 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130212$$aForschungszentrum Jülich$$b6$$kFZJ
001002270 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001002270 9141_ $$y2023
001002270 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08
001002270 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
001002270 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08
001002270 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001002270 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-25$$wger
001002270 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001002270 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001002270 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001002270 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-10-25
001002270 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
001002270 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001002270 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG ENVIRON SCI : 2022$$d2023-10-25
001002270 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001002270 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bENERG ENVIRON SCI : 2022$$d2023-10-25
001002270 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
001002270 9801_ $$aFullTexts
001002270 980__ $$ajournal
001002270 980__ $$aVDB
001002270 980__ $$aUNRESTRICTED
001002270 980__ $$aI:(DE-Juel1)IEK-5-20101013
001002270 981__ $$aI:(DE-Juel1)IMD-3-20101013