001002271 001__ 1002271
001002271 005__ 20231027114355.0
001002271 0247_ $$2doi$$a10.1093/brain/awad043
001002271 0247_ $$2ISSN$$a0006-8950
001002271 0247_ $$2ISSN$$a1460-2156
001002271 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01253
001002271 0247_ $$2pmid$$a36795496
001002271 0247_ $$2WOS$$aWOS:000954320200001
001002271 037__ $$aFZJ-2023-01253
001002271 082__ $$a610
001002271 1001_ $$0P:(DE-Juel1)184653$$aKasper, Jan$$b0$$ufzj
001002271 245__ $$aLocal synchronicity in dopamine-rich caudate nucleus influences Huntington’s disease motor phenotype
001002271 260__ $$aOxford$$bOxford Univ. Press$$c2023
001002271 3367_ $$2DRIVER$$aarticle
001002271 3367_ $$2DataCite$$aOutput Types/Journal article
001002271 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692944599_30112
001002271 3367_ $$2BibTeX$$aARTICLE
001002271 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001002271 3367_ $$00$$2EndNote$$aJournal Article
001002271 520__ $$aStructural grey and white matter changes precede the manifestation of clinical signs of Huntington's disease by many years. Conversion to clinically manifest disease therefore likely reflects not merely atrophy but a more wide-spread breakdown of brain function. Here, we investigated the structure - function relationship close to and after the clinical onset testing for its co-localization with specific neurotransmitter/receptor systems and important regional brain hubs, in particular caudate nucleus and putamen that are central to maintain normal motor behavior. In two independent cohorts of patients with premanifest Huntington's disease close to onset and very early manifest Huntington's disease (total n = 84; n = 88 matched controls) we used structural and resting state functional MRI. We show that measures of functional activity and local synchronicity within cortical and subcortical regions remain normal in the premanifest Huntington's disease phase despite clear evidence of brain atrophy. In manifest Huntington's disease, homeostasis of synchronicity was disrupted in subcortical hub regions such as caudate nucleus and putamen, but also in cortical hub regions, for instance the parietal lobe. Cross-modal spatial correlations of functional MRI data with receptor/neurotransmitter distribution maps showed that Huntington's disease specific alterations co-localize with dopamine receptors D1, D2, as well as dopamine and serotonin transporters. Caudate nucleus synchronicity significantly improved models predicting the severity of the motor phenotype or predicting the classification into premanifest Huntington's disease or motor manifest Huntington's disease. Our data suggest that the functional integrity of the dopamine receptor rich caudate nucleus is key to maintain network function. The loss of caudate nucleus functional integrity affects network function to a degree that causes a clinical phenotype. These insights into what happens in Huntington's disease could serve as a model for what might be a more general relationship between brain structure and function in neurodegenerative diseases in which other brain regions are vulnerable.
001002271 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001002271 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
001002271 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001002271 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B$$b1$$ufzj
001002271 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b2$$ufzj
001002271 7001_ $$0P:(DE-HGF)0$$aPeter, Jessica$$b3
001002271 7001_ $$0P:(DE-HGF)0$$aDogan, Imis$$b4
001002271 7001_ $$0P:(DE-HGF)0$$aWolf, Robert Christian$$b5
001002271 7001_ $$0P:(DE-Juel1)177889$$aReetz, Kathrin$$b6
001002271 7001_ $$0P:(DE-Juel1)177727$$aDukart, Juergen$$b7
001002271 7001_ $$0P:(DE-HGF)0$$aOrth, Michael$$b8$$eCorresponding author
001002271 773__ $$0PERI:(DE-600)1474117-9$$a10.1093/brain/awad043$$gp. awad043$$n8$$p3319–3330$$tBrain$$v146$$x0006-8950$$y2023
001002271 8564_ $$uhttps://juser.fz-juelich.de/record/1002271/files/awad043.pdf
001002271 8564_ $$uhttps://juser.fz-juelich.de/record/1002271/files/Kasper%20et%20al%2C%20Main%20text_R2_final.docx$$yOpenAccess
001002271 909CO $$ooai:juser.fz-juelich.de:1002271$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001002271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184653$$aForschungszentrum Jülich$$b0$$kFZJ
001002271 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)184653$$a HHU Düsseldorf$$b0
001002271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
001002271 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b1
001002271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b2$$kFZJ
001002271 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131675$$a HHU Düsseldorf$$b2
001002271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177889$$aForschungszentrum Jülich$$b6$$kFZJ
001002271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177727$$aForschungszentrum Jülich$$b7$$kFZJ
001002271 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177727$$a HHU Düsseldorf$$b7
001002271 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University Hospital of Old Age Psychiatry and Psychotherapy, Bern University , Switzerland$$b8
001002271 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001002271 9141_ $$y2023
001002271 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-09
001002271 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-09
001002271 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-09
001002271 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001002271 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001002271 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001002271 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001002271 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
001002271 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001002271 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
001002271 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001002271 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
001002271 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
001002271 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN : 2022$$d2023-10-21
001002271 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001002271 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001002271 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bBRAIN : 2022$$d2023-10-21
001002271 920__ $$lyes
001002271 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001002271 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
001002271 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x2
001002271 980__ $$ajournal
001002271 980__ $$aVDB
001002271 980__ $$aUNRESTRICTED
001002271 980__ $$aI:(DE-Juel1)INM-7-20090406
001002271 980__ $$aI:(DE-Juel1)INM-1-20090406
001002271 980__ $$aI:(DE-Juel1)INM-11-20170113
001002271 9801_ $$aFullTexts