Hauptseite > Publikationsdatenbank > DL4PuDe: Deep-Learning Framework for Pushing Detection in Pedestrian Dynamics > print |
001 | 1003812 | ||
005 | 20230307201804.0 | ||
024 | 7 | _ | |a 2128/34078 |2 Handle |
037 | _ | _ | |a FZJ-2023-01262 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Alia, Ahmed |0 P:(DE-Juel1)185971 |b 0 |e Corresponding author |
111 | 2 | _ | |a Conference for Research Software Engineering in Germany |g deRSE23 |c Paderborn |d 2023-02-20 - 2023-02-22 |w Germany |
245 | _ | _ | |a DL4PuDe: Deep-Learning Framework for Pushing Detection in Pedestrian Dynamics |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1678165499_17993 |2 PUB:(DE-HGF) |x After Call |
520 | _ | _ | |a At crowded event entrances, some pedestrians start pushing others to gain faster access to the events, resulting in dangerous situations. Pushing identification in video recordings of events is crucial for understanding pushing dynamics, thereby managing entrances safely. This talk presents a deep-learning framework to help researchers automatically identify pushing in videos of crowds. The framework consists of four modules: (1) Optical Flow Estimator that uses a pre-trained optical flow model to estimate the dense displacement fields from input video. (2) Wheel Visualization for generating motion information maps from the displacement fields. (3) EfficientNet-B0 Classifier that aims to identify pushing behavior from the maps. (4) A False Reduction and Annotation module; to reduce the number of false identifications of the classifier, annotate the regions of pushing and output the annotated video. We used five real-world ground truth of pushing behavior videos for the evaluation. Experimental results show that the framework achieves 86% accuracy. The framework is open-source and available at https://github.com/PedestrianDynamics/DL4PuDe. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027) |0 G:(BMBF)01DH16027 |c 01DH16027 |x 1 |
700 | 1 | _ | |a Maree, Mohammed |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Chraibi, Mohcine |0 P:(DE-Juel1)132077 |b 2 |
856 | 4 | _ | |u https://pad.gwdg.de/deRSE23-session-pads-ai-and-ml |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1003812/files/Abstract-DL4PuDe.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1003812/files/Alia-Ahmed-DL4PuDe.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1003812 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)185971 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132077 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-7-20180321 |k IAS-7 |l Zivile Sicherheitsforschung |x 0 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-7-20180321 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|