001003878 001__ 1003878
001003878 005__ 20240116084314.0
001003878 0247_ $$2doi$$a10.31234/osf.io/5dp3j
001003878 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01294
001003878 037__ $$aFZJ-2023-01294
001003878 082__ $$a610
001003878 1001_ $$0P:(DE-HGF)0$$aLuppi, Andrea I.$$b0$$eCorresponding author
001003878 245__ $$aComputational modelling in disorders of consciousness: closing the gap towards personalised models for restoring consciousness
001003878 260__ $$aOrlando, Fla.$$bAcademic Press$$c2023
001003878 3367_ $$2DRIVER$$aarticle
001003878 3367_ $$2DataCite$$aOutput Types/Journal article
001003878 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701184655_28677
001003878 3367_ $$2BibTeX$$aARTICLE
001003878 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001003878 3367_ $$00$$2EndNote$$aJournal Article
001003878 520__ $$aDisorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state of the art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.
001003878 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001003878 588__ $$aDataset connected to CrossRef
001003878 7001_ $$0P:(DE-HGF)0$$aCabral, Joana$$b1
001003878 7001_ $$0P:(DE-HGF)0$$aCofre, Rodrigo$$b2
001003878 7001_ $$0P:(DE-HGF)0$$aMediano, Pedro A. M.$$b3
001003878 7001_ $$0P:(DE-HGF)0$$aRosas, Fernando E.$$b4
001003878 7001_ $$0P:(DE-HGF)0$$aQureshi, Abid$$b5
001003878 7001_ $$0P:(DE-HGF)0$$aKuceyeski, Amy$$b6
001003878 7001_ $$0P:(DE-HGF)0$$aTagliazucchi, Enzo$$b7
001003878 7001_ $$0P:(DE-Juel1)185083$$aRaimondo, Federico$$b8
001003878 7001_ $$0P:(DE-HGF)0$$aDeco, Gustavo$$b9
001003878 7001_ $$0P:(DE-HGF)0$$aShine, James$$b10
001003878 7001_ $$0P:(DE-HGF)0$$aKringelbach, Morten L.$$b11
001003878 7001_ $$0P:(DE-HGF)0$$aOrio, Patricio$$b12
001003878 7001_ $$0P:(DE-HGF)0$$aChing, ShiNung$$b13
001003878 7001_ $$0P:(DE-HGF)0$$aPerl, Yonatan Sanz$$b14
001003878 7001_ $$0P:(DE-HGF)0$$aDiringer, Michael N.$$b15
001003878 7001_ $$0P:(DE-HGF)0$$aStevens, Robert D.$$b16
001003878 7001_ $$0P:(DE-HGF)0$$aSitt, Jaco$$b17
001003878 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2023.120162$$gVol. 275, p. 120162 -$$p120162$$tNeuroImage$$v275$$x1053-8119$$y2023
001003878 8564_ $$uhttps://juser.fz-juelich.de/record/1003878/files/1-s2.0-S1053811923003130-main.pdf$$yOpenAccess
001003878 8564_ $$uhttps://juser.fz-juelich.de/record/1003878/files/Luppi_Current_state_of_DOC_models_Manuscript_ForSubmission.pdf$$yOpenAccess
001003878 8564_ $$uhttps://juser.fz-juelich.de/record/1003878/files/1-s2.0-S1053811923003130-main.gif?subformat=icon$$xicon$$yOpenAccess
001003878 8564_ $$uhttps://juser.fz-juelich.de/record/1003878/files/1-s2.0-S1053811923003130-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001003878 8564_ $$uhttps://juser.fz-juelich.de/record/1003878/files/1-s2.0-S1053811923003130-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001003878 8564_ $$uhttps://juser.fz-juelich.de/record/1003878/files/1-s2.0-S1053811923003130-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001003878 909CO $$ooai:juser.fz-juelich.de:1003878$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001003878 9141_ $$y2023
001003878 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2022$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:47:40Z
001003878 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:47:40Z
001003878 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001003878 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2022$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001003878 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001003878 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001003878 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001003878 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:47:40Z
001003878 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDivision of Anaesthesia, School of Clinical Medicine, University of Cambridge$$b0
001003878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185083$$aForschungszentrum Jülich$$b8$$kFZJ
001003878 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)185083$$aHHU Düsseldorf$$b8
001003878 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001003878 920__ $$lyes
001003878 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001003878 980__ $$ajournal
001003878 980__ $$aVDB
001003878 980__ $$aUNRESTRICTED
001003878 980__ $$aI:(DE-Juel1)INM-7-20090406
001003878 9801_ $$aFullTexts