001     1003878
005     20240116084314.0
024 7 _ |2 doi
|a 10.31234/osf.io/5dp3j
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2023-01294
037 _ _ |a FZJ-2023-01294
082 _ _ |a 610
100 1 _ |0 P:(DE-HGF)0
|a Luppi, Andrea I.
|b 0
|e Corresponding author
245 _ _ |a Computational modelling in disorders of consciousness: closing the gap towards personalised models for restoring consciousness
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2023
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1701184655_28677
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state of the art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.
536 _ _ |0 G:(DE-HGF)POF4-5253
|a 5253 - Neuroimaging (POF4-525)
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Cabral, Joana
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Cofre, Rodrigo
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Mediano, Pedro A. M.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Rosas, Fernando E.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Qureshi, Abid
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Kuceyeski, Amy
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Tagliazucchi, Enzo
|b 7
700 1 _ |0 P:(DE-Juel1)185083
|a Raimondo, Federico
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Deco, Gustavo
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Shine, James
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Kringelbach, Morten L.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Orio, Patricio
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Ching, ShiNung
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Perl, Yonatan Sanz
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Diringer, Michael N.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Stevens, Robert D.
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Sitt, Jaco
|b 17
773 _ _ |0 PERI:(DE-600)1471418-8
|a 10.1016/j.neuroimage.2023.120162
|g Vol. 275, p. 120162 -
|p 120162
|t NeuroImage
|v 275
|x 1053-8119
|y 2023
856 4 _ |u https://juser.fz-juelich.de/record/1003878/files/1-s2.0-S1053811923003130-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1003878/files/Luppi_Current_state_of_DOC_models_Manuscript_ForSubmission.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1003878/files/1-s2.0-S1053811923003130-main.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1003878/files/1-s2.0-S1053811923003130-main.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1003878/files/1-s2.0-S1053811923003130-main.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1003878/files/1-s2.0-S1053811923003130-main.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1003878
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Division of Anaesthesia, School of Clinical Medicine, University of Cambridge
|b 0
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)185083
|a Forschungszentrum Jülich
|b 8
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)185083
|a HHU Düsseldorf
|b 8
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5253
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:47:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:47:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:47:40Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21