Home > Publications database > Intermediately Synchronised Brain States optimise trade-off between Subject Identifiability and Predictive Capacity > print |
001 | 1004183 | ||
005 | 20240226075522.0 | ||
024 | 7 | _ | |a 10.1101/2022.09.30.510304 |2 doi |
024 | 7 | _ | |a 2128/34186 |2 Handle |
037 | _ | _ | |a FZJ-2023-01295 |
100 | 1 | _ | |a Sasse, Leonard |0 P:(DE-Juel1)190306 |b 0 |
245 | _ | _ | |a Intermediately Synchronised Brain States optimise trade-off between Subject Identifiability and Predictive Capacity |
260 | _ | _ | |c 2022 |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1679557417_31832 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a Functional connectivity (FC) refers to the statistical dependencies between activity of distinct brain areas. To study temporal fluctuations in FC within the duration of a functional magnetic resonance imaging (fMRI) scanning session, researchers have proposed the computation of an edge time series (ETS) and their derivatives. Evidence suggests that FC is driven by a few time points of high-amplitude co-fluctuation (HACF) in the ETS, which may also contribute disproportionately to interindividual differences. However, it remains unclear to what degree different time points actually contribute to brain-behaviour associations. Here, we systematically evaluate this question by assessing the predictive utility of FC estimates at different levels of co-fluctuation using machine learning (ML) approaches. We demonstrate that time points of lower and intermediate co-fluctuation levels provide overall highest subject specificity as well as highest predictive capacity of individual-level phenotypes. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Larabi, Daouia I. |0 P:(DE-Juel1)180372 |b 1 |
700 | 1 | _ | |a Omidvarnia, Amir |0 P:(DE-Juel1)188339 |b 2 |
700 | 1 | _ | |a Jung, Kyesam |0 P:(DE-Juel1)178611 |b 3 |
700 | 1 | _ | |a Hoffstaedter, Felix |0 P:(DE-Juel1)131684 |b 4 |
700 | 1 | _ | |a Jocham, Gerhard |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 6 |
700 | 1 | _ | |a Patil, Kaustubh R. |0 P:(DE-Juel1)172843 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1101/2022.09.30.510304 |y 2022 |t bioRxiv |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1004183/files/2022.09.30.510304.docx |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1004183/files/2022.09.30.510304.full-1.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1004183 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190306 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)190306 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180372 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)180372 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)188339 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)178611 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)178611 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131684 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)131684 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 6 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)172843 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 7 |6 P:(DE-Juel1)172843 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|