001     1005101
005     20240712113105.0
024 7 _ |a 10.1002/aenm.202202789
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-01300
|2 datacite_doi
024 7 _ |a WOS:000888918600001
|2 WOS
037 _ _ |a FZJ-2023-01300
082 _ _ |a 050
100 1 _ |a Hoffknecht, Jan-Philipp
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Coordinating Anions “to the Rescue” of the Lithium Ion Mobility in Ternary Solid Polymer Electrolytes Plasticized With Ionic Liquids
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705045377_2554
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lithium salts with low coordinating anions such as bis(trifluoromethanesulfonyl)imide (TFSI) have been the state-of-the-art for polyethylene oxide (PEO)-based “dry” polymer electrolytes for 3 decades. Plasticizing PEO with TFSI-based ionic liquids (ILs) to form ternary solid polymer electrolytes (TSPEs) increases conductivity and Li+ diffusivity. However, the Li+ transport mechanism is unaffected compared to their “dry” counterparts and is essentially coupled to the dynamics of the polymer host matrix, which limits Li+ transport improvement. Thus, a paradigm shift is hereby suggested: the utilization of more coordinating anions such as trifluoromethanesulfonyl-N-cyanoamide (TFSAM), able to compete with PEO for Li+ solvation, to accelerate the Li+ transport and reach a higher Li+ transference number. The Li–TFSAM interaction in binary and ternary TFSAM-based electrolytes is probed by experimental methods and discussed in the context of recent computational results. In PEO-based TSPEs, TFSAM drastically accelerates the Li+ transport (increases Li+ transference number by a factor 6 and the Li+ conductivity by 2–3) and computer simulations reveal that lithium dynamics are effectively re-coupled from polymer to anion dynamics. Last, this concept of coordinating anions in TSPEs is successfully applied in LFP||Li metal cells leading to enhanced capacity retention (86% after 300 cycles) and an improved rate performance at 2C.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wettstein, Alina
|0 0000-0003-2693-3653
|b 1
700 1 _ |a Atik, Jaschar
|0 P:(DE-Juel1)174235
|b 2
700 1 _ |a Krause, Christian
|b 3
700 1 _ |a Thienenkamp, Johannes
|0 P:(DE-Juel1)179050
|b 4
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
700 1 _ |a Diddens, Diddo
|0 P:(DE-Juel1)169877
|b 7
|e Corresponding author
700 1 _ |a Heuer, Andreas
|0 P:(DE-Juel1)176646
|b 8
|e Corresponding author
700 1 _ |a Paillard, Elie
|0 P:(DE-Juel1)166311
|b 9
773 _ _ |a 10.1002/aenm.202202789
|g Vol. 13, no. 1, p. 2202789 -
|0 PERI:(DE-600)2594556-7
|n 1
|p 2202789 -
|t Advanced energy materials
|v 13
|y 2023
|x 1614-6832
856 4 _ |u https://juser.fz-juelich.de/record/1005101/files/Advanced%20Energy%20Materials%20-%202022%20-%20Hoffknecht%20-%20Coordinating%20Anions%20to%20the%20Rescue%20of%20the%20Lithium%20Ion%20Mobility%20in%20Ternary.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005101
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)179050
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172047
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)169877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)176646
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 1
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2023-10-26
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21