001     1005112
005     20240712084526.0
024 7 _ |a 10.1002/solr.202200593
|2 doi
024 7 _ |a 10.34734/FZJ-2023-01311
|2 datacite_doi
024 7 _ |a WOS:000874404300001
|2 WOS
037 _ _ |a FZJ-2023-01311
082 _ _ |a 600
100 1 _ |a Sovetkin, Evgenii
|0 P:(DE-Juel1)177942
|b 0
|e Corresponding author
245 _ _ |a Vehicle‐Integrated Photovoltaics Irradiation Modeling Using Aerial‐Based LIDAR Data and Validation with Trip Measurements
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712754720_24399
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Herein, a benchmark dataset for vehicle-integrated photovoltaics irradiance modeling is proposed. The vehicle trip data consist of trips in the state of North Rhine-Westphalia in Germany starting from March 2021, which amounts to more than 73 h and a total distance of 3422 km. The sensor box is equipped with GPS, a magnetic compass, acoustic wind, and irradiance sensors and records at a rate of 0.58 Hz. The irradiance sensors are positioned on four sides of the vehicle: roof, left, right, and rear. In addition to the data, a model that uses high-resolution aerial-measured topography (LIDAR) and low-resolution satellite-based weather data to forecast the effective irradiation of modules mounted on a moving vehicle is discussed. The utility of the simulation approach is demonstrated by computing irradiation over long periods for various driving profiles and comparing results with the collected measurement data. The data are published as a challenge, and the developed software is available in open source.
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Noll, Jonas
|0 P:(DE-Juel1)130276
|b 1
700 1 _ |a Patel, Neel
|0 P:(DE-Juel1)184851
|b 2
700 1 _ |a Gerber, Andreas
|0 P:(DE-Juel1)130241
|b 3
700 1 _ |a Pieters, Bart
|0 P:(DE-Juel1)130284
|b 4
|u fzj
773 _ _ |a 10.1002/solr.202200593
|g p. 2200593 -
|0 PERI:(DE-600)2882014-9
|n 8
|p 2200593 -
|t Solar RRL
|v 7
|y 2023
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/1005112/files/Solar%20RRL%20-%202022%20-%20Sovetkin%20-%20Vehicle%E2%80%90Integrated%20Photovoltaics%20Irradiation%20Modeling%20Using%20Aerial%E2%80%90Based%20LIDAR%20Data%20and.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005112
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177942
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)184851
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130241
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130284
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-16
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2022
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21