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ARTICLE INFO ABSTRACT

Keywords: The difference between age predicted using anatomical brain scans and chronological age, i.e., the brain-age
Brain-age estimation delta, provides a proxy for atypical aging. Various data representations and machine learning (ML) algorithms
Healthy aging

have been used for brain-age estimation. However, how these choices compare on performance criteria important
for real-world applications, such as; (1) within-dataset accuracy, (2) cross-dataset generalization, (3) test-retest
reliability, and (4) longitudinal consistency, remains uncharacterized. We evaluated 128 workflows consisting of
16 feature representations derived from gray matter (GM) images and eight ML algorithms with diverse inductive
biases. Using four large neuroimaging databases covering the adult lifespan (total N = 2953, 18-88 years), we
followed a systematic model selection procedure by sequentially applying stringent criteria. The 128 workflows
showed a within-dataset mean absolute error (MAE) between 4.73-8.38 years, from which 32 broadly sampled
workflows showed a cross-dataset MAE between 5.23-8.98 years. The test-retest reliability and longitudinal con-
sistency of the top 10 workflows were comparable. The choice of feature representation and the ML algorithm
both affected the performance. Specifically, voxel-wise feature spaces (smoothed and resampled), with and with-
out principal components analysis, with non-linear and kernel-based ML algorithms performed well. Strikingly,
the correlation of brain-age delta with behavioral measures disagreed between within-dataset and cross-dataset
predictions. Application of the best-performing workflow on the ADNI sample showed a significantly higher brain-
age delta in Alzheimer’s and mild cognitive impairment patients compared to healthy controls. However, in the
presence of age bias, the delta estimates in the patients varied depending on the sample used for bias correction.
Taken together, brain-age shows promise, but further evaluation and improvements are needed for its real-world
application.

Machine learning
Regression analysis

1. Introduction age is indicative of atypical aging. A higher positive difference between
the brain-age and chronological age, i.e., brain-age delta (which we refer

Precision and preventive medicine, e.g., early detection of to simply as delta), indicates “older-appearing” brains. As an indicator

Alzheimer’s disease (AD), can benefit from individual-level quantifi-
cation of atypical aging. Machine learning (ML) approaches, together
with large neuroimaging datasets can provide such individualized pre-
dictions. Indeed, ML algorithms can capture the multivariate pattern of
age-related changes in the brain associated with healthy or typical aging
(Franke et al., 2010; Varikuti et al., 2018; Cole 2020; Beheshti et al.,
2022; Hahn et al., 2022). Such a model can then be used to predict
age, i.e., brain-age, from an unseen subject’s image. Being a normative
model, a large deviation between the chronological and the predicted

of future risk of experiencing age-associated health issues, delta quan-
titatively relates to several age-related risk factors and general physi-
cal health, such as weaker grip strength, poorer lung function, history
of stroke, greater frequency of alcohol intake, increased mortality risk
(Cole et al., 2018; Cole, 2020), and poorer cognitive functions such as
fluid intelligence, processing speed, semantic verbal fluency, visual at-
tention, and cognitive flexibility (Cole et al., 2018; Boyle et al., 2021;
Richard et al., 2018; Gaser et al., 2013; Cole et al., 2017). Overall, the
delta can potentially serve as an omnibus biomarker of brain integrity
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and health if its reliability, given different ML workflow designs and
other analyses, can be established.

Studies have shown global and local gray matter (GM) volume
(GMV) loss (Good et al., 2001; Galluzzi et al., 2008; Giorgio et al.,
2010) with aging and accelerated loss in neurodegenerative disorders
(Good et al., 2001; Karas et al., 2004; Fjell et al., 2014). This makes GMV
a clinically relevant candidate for the investigation of atypical aging via
brain-age estimation (Franke et al., 2010; Cole et al., 2015). Brain-age
prediction models tend to perform better using GMV than white matter
volume (WMV) (Cole et al., 2017; Monté-Rubio et al., 2018), making
GMV a promising candidate for further investigation. Furthermore, by
reducing the methodological and data-related variance in a model’s pre-
diction error, the delta can better reflect a biological signal related to
atypical aging.

A brain-age estimation workflow consists of a feature space and an
ML algorithm, and several choices exist for each. For instance, voxel-
wise data with additional smoothing and/or resampling or parcel-wise
averages within a brain atlas can be used as features (Varikuti et al.,
2018; Eickhoff et al., 2021). Further dimensionality reduction meth-
ods such as principal components analysis (PCA) can improve the
observations-to-features ratio and signal-to-noise ratio (Franke et al.,
2010; Franke et al., 2013; Gaser et al., 2013). One also needs to choose
from a large pool of ML algorithms, such as relevance vector regres-
sion (RVR), and Gaussian process regression (GPR), many of which have
shown success in brain-age estimation. These choices are known to af-
fect performance (Gutierrez Becker et al., 2018; Baecker et al., 2021;
de Lange et al., 2022).

Studies using voxel-based morphometry (VBM)-derived GMV to pre-
dict brain-age have claimed prediction errors of ~5-8 years in healthy
individuals (Table S1). However, it is difficult to compare these stud-
ies as they differ in experimental setup and methodology, such as fea-
ture space used, ML algorithms, age range, and evaluation criteria. For
a brain-age estimation model to be used in real-world applications, it
must perform well on several evaluation criteria; (1) a model should
generalize well on new data from the training site as well as on data
from novel sites, (2) estimated age must be reliable on repeated mea-
surements, and (3) it should also exhibit longitudinal consistency, i.e.,
the predicted age should be proportionally higher for later scans after
a longer duration, assuming no significant change in lifestyle or health-
related interventions between the measurements.

A critical aspect, especially for clinical application, is the com-
monly reported negative correlation between delta and true age
(Beheshti et al., 2019; Smith et al., 2019; de Lange and Cole, 2020). This
may result in spurious correlations between the delta and non-imaging
measures when chronological age is not accounted for (Franke et al.,
2013; Lowe et al., 2016). This age bias complicates or may even mislead
downstream individualized decision-making. It can be mitigated using
bias correction models; usually, linear regression predicting brain-age
or delta using chronological age (Le et al., 2018; Liang et al., 2019;
Smith et al., 2019; de Lange et al., 2022). The data source (within or
cross-data) and size used to obtain bias correction models has substan-
tial impact on quality of the model. Taken together, there is a gap in
understanding the impact of the choices in designing brain-age work-
flows, and how they affect estimation and utility of individual-level
delta.

To fill this gap, we systematically assessed 128 workflows consist-
ing of 16 feature spaces derived from GM images and eight ML algo-
rithms with diverse inductive biases. Using several large neuroimaging
databases with a wide age range, we first evaluated these workflows
for their within-dataset and cross-dataset performances. Next, we eval-
uated the test-retest reliability and longitudinal consistency of some
top-performing workflows. Then, we assessed the performance of our
best-performing workflow in a clinical sample. We investigated the cor-
relations between delta and behavioral/cognitive measures in healthy
and clinical cohorts and various factors affecting these correlations. We
also compared our best-performing workflow with a publicly available
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model, brainageR. Several follow-up analyses were performed to inves-
tigate the effect of preprocessing (CAT vs. SPM) and tissue type (GM
vs. GM+WM+CSF) choices on prediction performance. Finally, given
recent evidence that lower accuracy models may capture atypical ag-
ing better (Bashyam et al., 2020), we investigated relationship of model
performance with delta and delta-behavior correlations.

2. Material and methods
2.1. Datasets

2.1.1. MRI data

We used T1-weighted (T1w) magnetic resonance imaging (MRI)
data from healthy subjects covering a wide age range (18-88 years,
training data) from several large neuroimaging datasets (Table 1),
including the Cambridge center for Ageing and Neuroscience (Cam-
CAN, N = 651) (Taylor et al., 2017), Information eXtraction from Im-
ages (IXI, N = 562) (https://brain-development.org/ixi-dataset/), the
enhanced Nathan Kline Institute-Rockland Sample (eNKI, N = 597)
(Nooner et al., 2012), the 1000 brains study (1000BRAINS; N = 1143)
(Caspers et al., 2014), Consortium for Reliability and Reproducibility
(CoRR) (Zuo et al., 2014), the Open Access Series of Imaging Studies
(OASIS-3) (LaMontagne et al., 2019), and the MyConnectome dataset
(Poldrack et al., 2015). The inclusion criteria were age between 18 and
90 years, gender data available, and no current or past known diag-
nosis of neurological, psychiatric, or major medical conditions. The IXI
dataset was acquired from multiple sites; however, we treat it as a sin-
gle dataset representing typical data acquired in a noisy clinical setting.
From the OASIS-3 dataset, we selected scans from healthy control sub-
jects acquired on 3T scanners. Some other datasets used by brainageR
were also used for a fair comparison with our best workflow. The cor-
responding details are provided in the Supplementary Table S8.

We used the Alzheimer’s Disease Neuroimaging Initiative (ADNI;
https://adni.loni.usc.edu/) database to evaluate the utility of brain-age
in neurodegenerative disorders (Jack et al., 2008; Petersen et al., 2010).
We included 3T T1w images from healthy control (HC, N = 209), early
and late mild cognitively impaired (EMCI, N = 237; LMCI, N = 128),
and Alzheimer’s disease (AD, N = 125) subjects. For some of these sub-
jects, data were available for the second timepoint 1-2 years apart (HC,
N =153; EMCL, N = 197; LMCI, N = 104; AD, N = 61) (Table 1d).

2.1.2. Non-imaging data

We used various behavioral/cognitive measures to compute their
correlations with delta. Fluid intelligence (FI; N = 631) assessed by the
Cattell Culture Fair test and reaction time for the motor learning task
(N = 302) from the CamCAN dataset (Taylor et al., 2017). From the
eNKI dataset, we used the Color-Word Interference Test (CWIT) inhi-
bition trial completion time (N = 340), the Trail Making Test (TMT)
number-letter switching condition completion time (N = 344), Wech-
sler Abbreviated Scale of Intelligence (WASI-II) matrix reasoning scores
(N = 347), and WASI-II similarities scores (N = 347) (Nooner et al.,
2012).

Three cognitive tests from ADNI measuring disease severity were
used; Mini-Mental State Examination (MMSE), Global Clinical Dementia
Rating Scale (CDR), and Functional Assessment Questionnaire (FAQ).

All the datasets except the 1000BRAINS data are available publicly.
Ethical approval and informed consent were obtained locally for each
study covering both participation and subsequent data sharing. The
ethics proposals for the use and retrospective analyses of the datasets
were approved by the Ethics Committee of the Medical Faculty at the
Heinrich-Heine-University Diisseldorf.

2.2. Data preparation

For the main analysis all Tlw images were preprocessed
using the Computational Anatomy Toolbox (CAT) version 12.8
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Table 1
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Sample characteristics of the datasets used in the current study. Datasets used a. for training within-dataset models. b. for training cross-dataset
models. c. to evaluate test-retest reliability and longitudinal consistency of brain-age delta and comparison with brainageR (note: for CORR
full sample, the demographics are reported for the last iteration). d. to evaluate performance in clinical samples. Abbreviations: CamCAN:
the Cambridge center for ageing and Neuroscience, IXI: Information eXtraction from Images (includes 1.5 and 3T scans), eNKI: the enhanced
Nathan Kline Institute-Rockland Sample, CoRR: Consortium for Reliability and Reproducibility, OASIS-3: the Open Access Series of Imaging
Studies, ADNI: the Alzheimer’s Disease Neuroimaging Initiative, HC: healthy control, EMCI and LMCI: early and late mild cognitively impaired,

AD: Alzheimer’s disease.

a.

Train dataset No. of subjects (N) Males/Females Age range Mean + S.D. Median
CamCAN 651 321/330 18-88 54.27 + 18.58 54.50
IXI 562 249/313 20 - 86 48.70 + 16.44 48.85
eNKI 597 188/409 18-85 48.25 + 18.51 50.00
1000BRAINS 1143 660/513 22-85 61.85 + 12.39 63.60
b.
Train dataset Train N Test dataset Test N
IXI + eNKI + 1000BRAINS 2302 CamCAN 651
CamCAN + eNKI + 1000BRAINS 2391 IXI 562
IXI + CamCAN + 1000BRAINS 2356 eNKI 597
IXI + CamCAN + eNKI 1810 1000BRAINS 1143
IXI + CamCAN + eNKI + 1000BRAINS 2953 CoRR, OASIS-3, MyConnectome, ADNI See below (c & d)
c.
Dataset Data Filtering N (sessions) Males/Females Age Range Mean + S.D. Median
CoRR Retest < 3 months 86 (2) 39/47 20.0 - 84.0 48.82 + 18.28 49.00
Retest 1 - 2 years 95 (2) 52/43 18.0 - 88.0 34.43 + 22.51 20.00
Retest 2 — 3.25 years 26 (2) 18/8 18.0 - 57.0 28.09 + 11.89 24.50
Full sample 107 51/56 18.0 - 88.0 49.99 + 18.87 50.00
OASIS-3 Retest < 3 months 36 (2) 21/15 42.66 - 80.90 63.46 + 8.80 62.93
Retest 3- 4 years 127 (2) 52/75 46.04 - 86.21 65.59 + 8.39 65.90
Full sample 806 338/468 43.00 - 89.00 69.07 + 9.06 69.00
MyConnectome Retest < 3 years 1(20) 1/0 45.39 - 48.02 45.73 + 0.58 45.56
d.
Dataset Disease N Males/Females Age Range Mean + S.D. Median
ADNI (Timepoint-1) HC 209 99/110 56.3 - 94.7 75.67 + 6.94 75.50
EMCI 237 128/109 55.7 - 88.7 70.88 + 7.12 70.40
LMCI 128 62/65 55.1-91.5 72.02 + 7.89 72.55
AD 125 65/60 56.0 - 91.0 74.68 + 7.99 75.40
ADNI (Timepoint-2) HC 153 70/83 57.3-95.8 75.89 + 6.63 75.50
EMCI 197 108/89 56.7 - 90.4 71.81 +7.04 71.10
LMCI 104 51/53 56.1 - 92.5 73.36 + 7.92 73.95
AD 61 32/29 57.0 - 93.0 75.79 + 7.83 76.80

(Gaser et al., 2022). To ensure accurate normalization and seg-
mentation, initial affine registration of Tlw images was done with
higher than default accuracy (accstr = 0.8). After bias field correction
and tissue class segmentation, accurate optimized Geodesic shooting
(Ashburner and Friston, 2011) was used for normalization (regstr = 1).
We used 1 mm Geodesic Shooting templates and outputted 1 mm
isotropic images. The normalized GM segments were then modulated
for linear and non-linear transformations.

For comparison with the brainageR model, we used the seven
datasets used by brainageR (Table S8) and preprocessed them using
CAT 12.8 (Section 2.9). To evaluate the effect of preprocessing and tis-
sue types, we used the SPM12 based preprocessing as implemented by
brainageR , which outputs three tissue segmentations (GM, WM, and
CSF,; see https://github.com/james-cole/brainageR/).

2.3. Workflows

Each workflow consists of a feature representation and an ML algo-
rithm. We evaluated 128 workflows constituting 16 feature representa-
tions and eight ML algorithms.

2.3.1. Feature representations

The 16 feature representations were derived from the CAT-
preprocessed voxel-wise GM images. Using voxel-wise data can lead to
overfitting due to the curse of dimensionality owing to a large number
of features compared to the number of samples. Hence, we implemented
two dimensionality reduction approaches previously used for brain-age
prediction.

In the first strategy, we used voxel-wise GMV after smoothing and
resampling (Franke et al., 2010), which may also improve the signal-to-
noise ratio. In the second strategy, we used an atlas to summarize data
from distinct brain regions (called parcels). This resulted in 16 feature
representations.

1. SX_RY: A whole-brain mask was used to select 238,955 voxels. Then,
smoothing (S) with an X mm FWHM Gaussian kernel and resam-
pling (R) using linear interpolation to Y mm spatial resolution were
applied with X = {0, 4, 8} and Y = {4, 8}, resulting in six feature
spaces (SO_R4, SO_R8, S4_R4, S4_R8, S8_R4, S8 R8; SX R4: 29,852
voxels and SX_R8: 3747 voxels).

2. SX RY + PCA: Additionally, PCA (Jolliffe, 2002) was applied to each
SX RY feature space while retaining 100% variance, creating an-
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Fig. 1. The framework to select the best-performing workflow for

128 32 10 brain-age prediction. A total of 128 workflows were first evaluated
Workflows Workflows Workflows for their within-dataset prediction performance using five-fold cross-
validation (CV). Next, 32 workflows were selected based on the CV

( Single-dataset Cross-dataset Test-retest reliability & mean absolute error (MAE) and assessed for cross-dataset prediction
predictions predictions longitudinal consistency performance. Within-dataset and cross-dataset evaluations were per-

3 3 3 formed using four datasets (CamCAN, IXI, eNKI and 1000BRAINS).

Then, 10 workflows out of 32 were selected based on their test MAE

5 fold CV Left-out site Independent sample and assessed for test-retest reliability and longitudinal consistency us-

3 L 4 L 4

ing OASIS-3 and CoRR datasets. The best-performing workflow was
selected after considering all the evaluation criteria.

Train 32 workflows on 3
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4 datasets separately

Train 10 workflows on 4
datasets combined

test on left out together
2 L 4 L 4
CV MAE Test MAE Correlation Coefficient
2 L 4 4

[ Select 32 workflows }— [ Select 10 workflows ]» [ Select 1 workflow ]

other six representations (SO_R4 + PCA, SO_R8 + PCA, S4_ R4 + PCA,
S4_R8 + PCA, S8_R4 + PCA, S8_R8 + PCA).

3. Parcel-wise: Four parcel-wise feature spaces were created by com-
bining cortical {100, 400, 800, 1200} parcels (Schaefer et al.,
2018) with 36 subcortical (Fan et al., 2016) and 37 cerebellum
(Buckner et al., 2011) parcels. We calculated the mean GMV of all
the voxels within each parcel (173, 473, 873, and 1273 features).

2.3.2. Machine learning algorithms

We included eight ML algorithms covering diverse inductive biases:
ridge regression (RR), least absolute shrinkage and selection operator
(LASSO) regression (LR), elastic net regression (ENR), kernel ridge re-
gression (KRR), random forest regression (RFR), GPR, RVR with the
linear kernel (RVRlin), and polynomial kernel of degree 1 (RVRpoly).
These algorithms have been previously used in the prediction of age and
other behavior variables from neuroimaging data (Franke et al., 2010;
Gaser et al., 2013; Su et al., 2013; Cole et al., 2015; Varikuti et al., 2018;
Jonsson et al., 2019; Liang et al., 2019; Zhao et al., 2019; He et al., 2020;
Baecker et al., 2021; Boyle et al., 2021; Lee et al., 2021; Peng et al.,
2021; Treder et al., 2021; Vidal-Pineiro et al., 2021; Beheshti et al.,
2022; Cole, 2020) (Table S1). Details of these algorithms are provided
in the Supplementary Methods.

Recently, deep-learning (DL) models have been applied for brain-
age estimation with success (Jiang et al., 2019; Jonsson et al., 2019;
Peng et al., 2021). However, in this work, we focus on conventional
ML models for the following reasons: (1) ML models have shown com-
petitive performance to DL models (Cole et al., 2017; He et al., 2020;
Schulz et al., 2020; Grinsztajn et al., 2022), and (2) the resources re-
quired for ML are more readily available and thus still enjoy wider ap-
plicability with a lower computational footprint (Thompson et al., 2020;
van Wynsberghe, 2021).

2.3.3. Learning setup and software

The ML algorithm’s hyperparameters were estimated in a nested
fashion using an inner cross-validation (CV) (Varoquaux et al., 2017).
Before training, features with low variance were removed (threshold <
le-5), and the remaining features were Z-scored to have zero mean and
unit variance. Any preprocessing steps, including PCA, were applied in
a CV-consistent fashion to avoid data leakage, i.e., the parameters were
estimated on the training set and applied to both the training and the
test set (More et al., 2021).

All the workflows were implemented in Python version 3.9.1
using the Julearn machine-learning library (https://juaml.github.io/
julearn/), which in turn uses the scikit-learn library for the learning al-
gorithms KRR, GPR, and RFR (http://scikit-learn.org/) (Pedregosa et al.,
2011). LR, RR, and ENR were implemented using the Python wrapper
for glmnet (https://pypi.org/project/glmnet/) (Friedman et al., 2010).
RVRIin and RVRpoly were implemented using the scikit-rvm package
(https://github.com/JamesRitchie/scikit-rvm/). The codes used for pre-
processing, feature extraction, model training and prediction are avail-
able at https://github.com/juaml/brainage_estimation.

2.4. Analysis setup

Given data acquisition and site-related biases, it is important to iden-
tify a workflow that shows high accuracy in different evaluation scenar-
ios. For instance, a workflow that works well on a dataset might not
work well on another dataset. To accommodate such real-world scenar-
ios, we followed a systematic procedure where the workflows were sub-
jected to increasingly stringent evaluations (Fig. 1). In brief, we first
evaluated the within-dataset CV performance of the 128 workflows.
Next, 32 workflows characterizing the overall pattern of performance
were selected for cross-dataset evaluation. This selection was performed
by uniformly sampling over the within-dataset CV performance. This al-
lows for the possibility that workflows with low within-dataset perfor-
mance might perform well in cross-dataset evaluation. Finally, the top
10 workflows out of the 32 were evaluated for their test-retest reliability
and longitudinal consistency. After considering all the evaluation crite-
ria, the best-performing workflow was chosen and used for application
on ADNI data and comparison with brainageR. Specific analysis steps
are described below.

2.4.1. Within-dataset and cross-dataset evaluations

We evaluated the 128 workflows (see Section 2.3) separately on four
datasets, CamCAN, IXI, eNKI, and 1000BRAINS. This scenario assumes
that enough within-dataset training data are available and is widely
used in brain-age estimation work (Ashburner, 2007; Su et al., 2013;
Gutierrez Becker et al., 2018). To estimate a single out-of-sample brain-
age for each subject, we used a 5-fold CV. For each hold-out (test) fold,
the remaining 80% of the data were used for training and to obtain a
generalization estimate using 5 times repeated 5-fold (5 x 5-fold) nested
CV. All CV analysis was stratified by age to preserve the age distribution.
It is important to obtain a single prediction per subject (as opposed to
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multiple predictions per subject if the outer CV were repeated) for fur-
ther meaningful analyses, such as correlation with non-imaging mea-
sures. Consequently, we computed two measures, test performance, and
CV performance. The test performance was obtained by averaging over
the outer 5 folds. The CV performance was obtained by first averaging
over the inner 5 x 5-fold CV and then over the outer 5-fold CV. Finally,
the CV and test performance were averaged over the four datasets. The
performance was evaluated using mean absolute error (MAE), Pearson’s
correlation between predicted and true (chronological) age, and the co-
efficient of determination R2.

We followed a systematic procedure to select a subset of workflows
while maintaining diversity in terms of CV performance. Specifically,
the workflows were arranged in the increasing order of their average
CV MAE and divided into 16 groups. Next, the top two workflows (with
the lowest CV MAE) from each group were selected.

We tested these 32 selected workflows on cross-dataset to obtain
sample-unbiased performance. This emulates the real-world scenario
where data from the application site are not available, and the train-
ing and test data come from different sources with confounding effects,
such as scanner hardware or operator inconsistencies (Jovicich et al.,
2006; Chen et al., 2014). Three out of four datasets (CamCAN, IXI, eNKI
and 1000BRAINS) were pooled to form the training data, and the hold-
out dataset was used as the test data. A 5 x 5-fold CV was performed
on the training data to estimate the generalization performance with
an internal CV for hyperparameter tuning. The CV performance was av-
eraged over 5 x 5-fold CV and then over the four hold-out datasets.
The test performance was averaged over the four datasets. The perfor-
mance was again evaluated using MAE, Pearson’s correlation between
predicted and true age, and the coefficient of determination R2.

The 32 workflows were arranged in increasing order of their average
test MAE, i.e., their average performance on the hold-out datasets, from
which the top 10 workflows were selected.

2.4.2. Test-retest reliability and longitudinal consistency

We then trained models using the 10 selected workflows with
the four datasets combined as training data (IXI + eNKI + Cam-
CAN + 1000BRAINS, N = 2953; Supplementary Fig. S1). The test-retest
reliability and longitudinal consistency of the delta were evaluated for
the 10 models using the OASIS-3 and CoRR datasets.

To evaluate test-retest reliability, we used: two scans from the same
subjects acquired within a delay of (1) less than three months (CoRR:
N = 86, age range = 20-84 years, OASIS-3: N = 36, age range = 43—
81), and (2) between 1 and 2 years (CoRR: N = 95, age range = 18-88).
The concordance correlation coefficient (CCC) (Lin, 1989) between the
delta (predicted age minus age at the scan time) from the two scans was
calculated.

To evaluate longitudinal consistency, two scans from the same sub-
jects acquired with a retest duration (1) between 2 and 3.25 years
(CoRR: N = 26, age range = 18-57), and (2) between 3 and 4 years
(OASIS-3: N = 127, age range = 46-86) were used. We computed Pear-
son’s correlation between the difference in the predicted age and the
difference in chronological age from the two scans. A higher positive
correlation here would indicate higher longitudinal consistency.

By considering the results from the within- and cross-dataset anal-
ysis, test-retest reliability, and longitudinal consistency, we chose one
best-performing workflow for further analysis.

2.5. Bias correction

Many studies have reported age-dependency of the delta with over-
prediction in young subjects and under-prediction in older subjects
(Le et al., 2018; Liang et al., 2019), which renders the usage of delta
as an individualized biomarker problematic. A common practice is to
apply a statistical bias correction to remove the effect of age from ei-
ther the predicted age or the delta (Le et al., 2018; Liang et al., 2019;
Smith et al., 2019; Cole, 2020; de Lange and Cole, 2020). Note that
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when calculating correlations of delta with non-imaging measures, bias
correction is expected to be similar to partial correlation analysis when
age is used as a covariate.

Several alternatives are available for bias correction (de Lange
et al., 2019; Cole, 2020; de Lange and Cole, 2020; Smith et al.,
2019(Beheshti et al., 2019)). We chose the method used by Cole and col-
leagues (Cole, 2020) as it does not use the chronological age of the test
data, and thus avoids information leakage which can bias comparison
between workflows by making low-performing workflows appear good
(de Lange et al., 2022). Furthermore, this method is relevant for possi-
ble future applications like forensic investigations where test age is not
available. A linear regression model was fitted with the out-of-sample
(from the CV) predicted age as the dependent variable and chronological
age as the independent variable using the training data. The predicted
age in the test set was corrected by subtracting the resulting intercept
and dividing by the slope.

2.6. Correlation with cognitive measures

To understand the effect of bias correction and the impact of co-
variates on delta-behavior correlations, we performed correlations of
behavior/cognitive measures from CamCAN and eNKI datasets (see
Section 2.1.2) with (1) uncorrected delta, (2) uncorrected delta with
age as a covariate, (3) corrected delta, and (4) corrected delta with age
as a covariate. If the bias correction eliminates the antagonistic relation
between delta and age, we expect (2), (3), and (4) to give similar corre-
lations. Furthermore, to assess the impact of data used for learning bias
correction models, we performed these analyses using delta obtained
from within-dataset and cross-dataset predictions.

2.7. Brain-age in clinical samples

Next, we used the ADNI dataset (Jack et al., 2008; Petersen et al.,
2010) to validate our best-performing workflow on clinical samples. We
estimated and compared the delta between HC, EMCI, LMCI, and AD
subjects (Table 1d).

Our best-performing workflow trained on the four datasets was used
to obtain the predictions, followed by application of bias correction
model (see Section 2.5). We compared two bias correction models, one
derived using the CV predictions from the four training datasets and an-
other using HC samples in ADNI data (Franke and Gaser, 2012). The
group-wise corrected delta was compared using analysis of variance
(ANOVA) followed by Bonferroni correction to counteract multiple com-
parisons. Emulating the scenario that application sites might have differ-
ent numbers of HC samples, we learned bias correction models using HC
sub-samples (0.1 to 0.9 fraction in steps of 0.1) drawn without replace-
ment and applied them on the full HC and AD samples. This process was
repeated 100 times to estimate the variance of mean corrected delta in
HC and AD subjects.

Finally, we investigated associations between the corrected delta and
three clinical test scores, MMSE, CDR, and FAQ. The correlations were
computed using the whole sample and different diagnostic groups sep-
arately using Pearson’s correlation with age as a covariate for both ses-
sions separately.

2.8. Relationship of MAE with delta and delta-behavior correlations

Here, we sought to select a workflow that provides accurate and re-
liable predictions. We reason that a workflow that accurately predicts
the age of healthy individuals captures the typical brain aging process,
and thus, a large delta in new data can be considered indicative of atyp-
ical aging. However, recent evidence shows that an overfitted brain-
age model (high training accuracy) is not the most sensitive in iden-
tifying pathologies (Bashyam et al., 2020). This study showed that a
relatively moderately fit model yielded brain-age deltas with more sig-
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Fig. 2. Within-dataset and cross-dataset results. a. The line plot showing CV MAE (averaged across four datasets) for 128 workflows arranged in increasing order
(names of all workflows are given in Table S2). The orange bars represent the MAEs of 32 selected workflows with their names in the table on left. b. The scatter plot
between the chronological age and within-dataset predicted age for the CamCAN data using S4_R4 + GPR workflow (MAE = 4.94 years and r = 0.94, p = 6.4e-309).
c. The line plot showing test MAE (averaged across four runs) for the 32 workflows arranged in increasing order (names of all workflows are given in Table S3). The
purple bars represent the MAEs of 10 selected workflows with their names in the table on the bottom right. d. The scatter plot between the chronological age and
cross-dataset predicted age for the CamCAN data using S4_ R4 + PCA + GPR workflow (MAE = 4.75 years and r = 0.95, p = 0.0e+00).

nificant group differences and the larger effect sizes between control
and disease groups in various brain pathologies.

To investigate this possibility, we trained the 32 workflows selected
from the cross-dataset analysis with four datasets pooled together for
training and applied to timepoint 2 ADNI data. To understand how
the model performance varies with its utility, we compared the mod-
els’ MAEs with the corrected mean delta in AD sample and examined
whether it was related to the delta-behavior correlations. We then per-
formed a similar analysis in two HC samples (CamCAN and eNKI) using
corresponding within-dataset hold-out predictions.

2.9. Comparison with brainageR and effect of preprocessing and tissue
types

We compared the performance of our best-performing workflow
with an already available brain-age estimation model, brainageR. The
brainageR model was trained on 3377 healthy individuals (age range =
18-92 years, mean + SD age = 40.6 + 21.4 years) from seven publicly
available datasets using the GPR algorithm. It uses SPM12 to segment
and normalize T1w images, from which GM, WM, and CSF vectors were
extracted (using 0.3 probability masked brainageR-specific templates).
PCA was used to reduce data dimensionality, and 435 components ex-
plaining 80% of the variance were retained. Note that brainageR uses
three tissue types, while our focus is on GM.

To avoid bias due to different training data, for this comparison we
used data from the same subjects used by brainageR (2 subjects could
not be processed; Table S8). Next, using this training data, we trained
our best-performing workflow using GMV extracted from CAT 12.8 and
compared the performance with already trained brainageR model on
three datasets, (1) CoRR (N = 107, sub-sampled to keep uniform dis-

tribution in age-range = 18-88 years, repeated 100 times; see Supple-
mentary Methods for more details), (2) the OASIS-3 (N = 806; first scan
per subject, age-range = 43-89 years), and (3) the MyConnectome study
(one subject scanned 20 times in a period of 3 years; age range = 45—
48 years). Additionally, we used sub-samples from OASIS-3 with test-
retest durations of (1) less than 3 months (N = 36, 43-81 years) and
(2) between 3 and 4 years (N = 127, 46-86 years) to evaluate test-retest
reliability and longitudinal consistency, respectively (see Section 2.4.2).
Next, we compared how the preprocessing and tissue types af-
fect model performance. Following our focus on GMV, we compared;
(1) CAT-preprocessed GMV, (2) SPM-preprocessed GMV, and (3) SPM-
preprocessed GM, WM, and CSF images following brainageR. The latter
investigates whether WM and CSF features provide complementary in-
formation leading to better predictions. For this, we performed within-
dataset evaluation on IXI and CamCAN datasets (see Section 2.4.1).

3. Results
3.1. Within-dataset and cross-dataset predictions

For within-dataset analysis, the CV performance (average over 125
estimates—inner 5 x 5-fold CV, repeated 5 times, see Section 2.4.1) and
test performance based on single prediction per subject from the outer
CV, were calculated. These were then averaged separately over four
datasets.

The average CV MAE (4.90-8.48 years) and the average test MAE
(4.73-8.38 years) (Fig. 2a, Table S2) were similar, indicating that the
nested CV generalization estimates are indeed indicative of their test
performance. The correlation between the true and predicted age on
the test data ranged from 0.81 to 0.93, while the age bias (correlation
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Table 2
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The performance metric for the best workflow on different datasets. A. Within-dataset prediction (using S4_R4 + GPR) b. Cross-dataset prediction (using
S4 R4 + PCA + GPR). Abbreviations: MAE: mean absolute error between true and predicted age, MSE: mean squared error between true and predicted age, R?: the
proportion of variance of predicted age explained by the independent variables in the model, Corr (true, pred): Pearson’s correlation between true and predicted

age, Age bias: Pearson’s correlation between true age and brain-age delta.

Datasets N a. Within-dataset results b. Cross-dataset results
MAE MSE R? Corr (true, pred) Age bias MAE MSE R? Corr (true, pred) Age bias
CamCAN 651 4.94 39.54 0.89 r=0.94,p =6.4e-309 r=-0.42,p=6.8e-29 4.75 38.35 0.89 r=0.95,p=0.0e+00 r=-0.23,p=3.1e-09
IXI 562 476 3520 0.87 r=0.93,p=29e252 r=-0.48,p=235e33 6.08 57.35  0.79 r=0.94,p=1.2e-267 r=-0.18,p=2.2e-05
eNKI 597 520 4485 087 r=0093,p=28.1e-267 r=-0.47,p=1.4e33 497 39.65 0.88 r=0.94,p=9.7e-288 r=-0.49,p = 3.6e-38
1000- BRAINS 1143 4.04 26.65 0.83 r=0.91,p=0.0e+00 r=-0.50,p=2.0e-73 5.13 41.03 0.73 r=0.90,p =0.0e+00 r=-0.15,p = 2.0e-07
Table 3

Concordance correlation coefficient (CCC) between brain-age delta from two sessions at different test-retest durations and their respective mean

absolute error (MAE) between true and predicted age for CoRR and OASIS-3 datasets for the top 10 workflows.

CoRR dataset

OASIS-3 dataset

Retest duration Age range (years) < 3 months (N = 86; 20.0 - 84.0)

1 -2 years (N = 95; 18.0 - 88.0) < 3 months (N = 36; 42.66 - 80.90)

Workflows MAE (ses-1) MAE (ses-2) CCC MAE (ses-1) MAE (ses-2) CcC MAE (ses-1) MAE (ses-2) CCC
S4 R4 + PCA + GPR 4.808 5.008 0.97 4.374 4.204 0.95 4.2 3.801 0.80
S4_R4 + GPR 4.928 5.112 0.97 4.738 4.49 0.96 4.24 3.935 0.82
S4_ R4 + PCA + RVRIin 5.811 5.757 0.97 5.156 5.072 0.96 5.288 5.223 0.83
S4_R4 + RVRlin 5.815 5.76 0.97 5.141 5.065 0.96 5.234 5.177 0.83
S4_R8 + RVRlin 6.375 6.265 0.95 5.444 5.33 0.96 5.109 5.2 0.77
S4_R4 + RR 5.64 5.653 0.98 5.174 5.277 0.97 4918 4.71 0.85
S4 R4 + PCA + RR 5.742 5.732 0.98 5.288 5.404 0.97  4.988 4.744 0.85
SO_R4 + LR 6.281 6.359 0.96 6.251 6.293 0.94 4.949 5.161 0.86
S4_R8 + LR 6.763 6.676 0.97 6.497 6.434 0.97 5.811 5.896 0.79
S4_R8 + RR 6.232 6.185 0.97 5.975 6.016 0.97  5.332 5.328 0.81

between true age and delta) ranged from —0.22 to —0.83 (Table S2).
Overall, all workflows showed a high similarity in their predictions (cor-
relations 0.83-0.99 averaged across the four datasets; Fig. S2). The top
20 workflows showed comparable CV and test MAE with a difference of
less than 0.4 years.

Well-performing workflows primarily consisted of voxel-wise
smoothed and resampled feature spaces with and without PCA, with
S4_R4 (smoothed with a 4 mm FWHM kernel and resampled to 4 mm
spatial resolution) generally performing better. Some workflows with
PCA performed similarly to their respective non-PCA version but not all
(see Supplementary Table S2). GPR, KRR, RR, and both RVR algorithms
generally ranked high. Most algorithms performed worse with parcel-
wise features, while RFR generally exhibited the worst performance.

The workflow S4_R4 + GPR performed the best (see Table 2a for its
performance on each of the four datasets). This workflow showed the
lowest average CV MAE with a high R? and a high correlation between
true and predicted age (Fig. 2b) but a relatively high age bias (Fig. S3).
The second-best workflow, S4 R4 + PCA + GPR, performed similarly
to the best workflow. Other workflows with the S4_R4 feature space,
with or without PCA, together with the KRR, RVRpoly, and RVRlin al-
gorithms, performed comparably. From the 128 workflows, we selected
32 workflows while preserving diversity in terms of CV MAE.

The 32 workflows selected for cross-dataset analysis showed the av-
erage CV (5 x 5-fold on training data) MAE (4.28-7.39 years) lower
than the test (hold-out dataset) MAE (5.23-8.98 years) (Fig. 2c). The
test-set correlation between true and predicted age ranged from 0.82
to 0.93, while the age bias ranged from —0.27 to —0.75 (Table S3). All
workflows showed a high similarity in their predictions (correlations
0.83-0.99 averaged across the four runs). Due to this high similarity,
the averaged predictions, i.e., ensemble, from 32 workflows were not
better than the top-performing workflow (Fig. S2). The workflows that
performed well within-dataset also performed well in cross-dataset pre-
dictions (Fig. S6). These results indicate that the corresponding models
could generalize well to data from a new unseen site.

We selected 10 workflows with the lowest test MAE for further
analysis. These workflows consisted of only voxel-wise feature spaces

(S4_R4, S4_R8, and SO_R4) with and without PCA. The ML algorithms
included GPR, RVRlin, RR, and LR. The best-performing workflow was
the S4_R4 + PCA + GPR with the lowest average test MAE, a high R?, a
high correlation between true and predicted age (Fig. 2d), and moderate
age bias (Fig. S3), see Table 2b for its performance on all four datasets),
followed by the S4_R4 + GPR workflow.

3.3. Test-retest reliability and longitudinal consistency

The test-retest reliability and longitudinal consistency of the top 10
workflows selected from the cross-dataset evaluation were evaluated
using the CoRR and OASIS-3 datasets.

For the short retest duration of less than three months, all 10 work-
flows showed high test-retest reliability (CoRR: CCC = 0.95-0.98, age
range = 20-84 years; OASIS-3: CCC = 0.77-0.86, age range = 43-81
years). For the longer retest duration of 1-2 years in the CoRR dataset,
CCC ranged between 0.94-0.97 (age range = 18-88 years) (Table 3).
These results show that the age was reliably estimated by the selected
workflows.

Next, we evaluated the longitudinal consistency as the correlation
between the difference in the predicted age and the difference in the
chronological age (Fig. 3, Table S4). Six workflows out of 10 showed a
significant positive linear relationship at the retest duration of 2-3.25
years (r between 0.451-0.437, p < 0.05) in the CoRR dataset. These
workflows included the S4_R4 feature space with and without PCA with
the GPR, RVRlin, and RR algorithms. In contrast, none of the workflows
showed a linear relationship in the OASIS-3 dataset (retest duration 3—4
years).

Although the workflows showed similar test-retest reliability and
longitudinal consistency, the workflow S4_R4 + PCA + GPR showed the
lowest MAE on these sub-samples (Tables 3, S4). Therefore, considering
all the analysis scenarios, within-dataset, cross-dataset, test-retest reli-
ability, and longitudinal consistency, although other workflows were
also competitive, we deemed the S4_R4 + PCA + GPR workflow as well-
performing and chose it for further analysis.
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Fig. 3. Longitudinal consistency. (top) The brain-age delta from two scans of the same subjects and (bottom) the scatter plot between the difference in chronological
age and the difference in predicted age between two scans acquired within a retest duration of a. 2-3.25 years (CoRR dataset) b. 3—-4 years (OASIS-3 dataset).

3.4. Bias correction and correlation with behavioral/cognitive measures

In the CamCAN data, FI was negatively correlated with age
(r=-0.661, p = 1.92e-80), while motor learning reaction time was pos-
itively correlated with age (r = 0.544, p = 1.11e-24). In the eNKI data,
CWIT inhibition trial completion time (r=0.361, p = 6.50e-12) and TMT
number-letter switching trial completion time (r = 0.279, p = 1.45e-07)
were positively correlated with age. On the other hand, WASI matrix
reasoning scores were negatively correlated (r = —0.240, p = 6.03e-06),
and WASI similarities scores were not correlated (r = 0.052, p = 0.332)
with age (Table 4).

As several ways have been proposed to obtain the correlation be-
tween delta and behavior, e.g., using bias-corrected delta or using age
as a covariate, we evaluated several alternatives (see Section 2.6).

3.4.1. Within-dataset predictions

Within-dataset hold-out predictions, i.e., single prediction per sub-
ject, were derived using the chosen workflow (S4_R4 + PCA + GPR).
The bias correction model was estimated using the CV predictions on
the same dataset. In both datasets, there was no residual age bias af-
ter bias correction: CamCAN, r = —0.17, p = 1.13e-05 and r = 0.00,
p = 0.999; and eNKI, r = —0.20 p = 4.53e-07 and r = 0.001, p = 0.986,
before and after correction, respectively (Fig. S3).

We first calculated the correlation between the uncorrected delta and
behavioral measures using age as a covariate (Table 4a). In the Cam-
CAN data, a higher delta was associated with lower FI (r = —0.154,
p = 0.0001) and higher motor learning reaction time (r = 0.181,
p =0.002). In the eNKI data, a higher delta was associated with lower re-
sponse inhibition and selective attention, as indicated by a higher CWIT
inhibition trial completion time (r = 0.109, p = 0.045). There were no
correlations between delta and intelligence scores (WASI matrix reason-

ing and similarities). The results with age, age?, and gender as covariates
showed a similar trend (Table S5a).

Next, we repeated this analysis with the corrected delta (Table 4a)
and expected results similar to using uncorrected delta with age as a
covariate. We indeed found similar correlations with FI (r = —0.157
D = 7.24e-05) and motor learning reaction time (r = 0.186 p = 0.001)
in the CamCAN data, but no significant correlation with CWIT inhibi-
tion trial completion time (r = 0.094, p = 0.084) in the eNKI data. The
correlations using corrected delta with covariate were highly similar to
uncorrected delta with covariate (Table 4a).

3.4.2. Cross-dataset predictions

Cross-dataset predictions were derived for the CamCAN and
eNKI datasets using the S4 R4 + PCA + GPR workflow trained
on the IXI + eNKI + 1000BRAINS (N = 2302) and IXI + Cam-
CAN + 1000BRAINS (N = 2356) datasets, respectively.

In the CamCAN data, the bias correction model was successful with
age bias before and after correction r = —0.23, p = 3.06e-09 and
r = —0.04, p = 0.263, respectively. However, the correction was not
successful in the eNKI data; the age bias was r = —0.49, p = 3.62e-38
and = —0.35, p = 8.39e-19 before and after correction, respectively (Fig.
S3). This result indicates that the bias correction might not always work
well when applied to cross-dataset.

Using age as a covariate on the uncorrected delta, we did not find
a significant delta-behavior correlation in the CamCAN data. In the
eNKI data, a higher delta was associated with lower response inhibi-
tion and selective attention, as indicated by a higher CWIT inhibition
trial completion time (r = 0.208, p = 0.0001) and lower cognitive flexi-
bility indicated by a higher TMT completion time (r = 0.147, p = 0.006)
(Table 4b). There were no correlations between delta and intelligence
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Table 4

Correlation of brain-age delta with various behavioral measures with and without bias correction. a. From within-dataset predictions. b. From cross-dataset predictions. Age was used as a covariate. Abbreviations:

CWIT: Color-Word Interference Test, TMT: Trail Making Test, WASI-II: Wechsler Abbreviated Scale of Intelligence.

a. From within-dataset predictions
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Correlation with age

Behavioral measure

Dataset

(¢) No covariate (d) With covariate

(b) With covariate

(a) No covariate
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scores (WASI matrix reasoning and similarities). The results with age,
age?, and gender as covariates showed a similar trend (Table S5b).

Since there was a residual correlation between corrected delta and
age, the correlations with behavior without age as a covariate can be un-
reliable. We, therefore, do not discuss correlations of the corrected delta
without age as a covariate, but they are reported in Table 4 for complete-
ness. Additionally, as expected, the correlations using corrected delta
with age as a covariate were similar to uncorrected delta with covariate
(Table 4b).

3.5. Predictions in the ADNI sample

At timepoint 1, the mean uncorrected delta was —5.97 years in HC,
—4.39 in EMCI, -3.57 in LMCI, and —2.13 in AD (Fig. 4a). In other
words, the model underestimated age. The slope and intercept derived
from the bias correction model using the training data (CV predictions)
could not entirely correct for the under-estimation and age bias (Fig. 4b).
Bias correction using the whole ADNI HC sample removed the bias (aver-
age delta, HC = 0, EMCI = 0.85, LMCI = 2.09, AD = 4.47 years) (Fig. 4c).
ANOVA revealed that the corrected delta differed significantly across the
groups (F = 12.94, p = 3.10e-08), and post-hoc t-tests revealed signifi-
cant differences between AD and HC (p = 1.16e-08), EMCI (p = 1.87e-
05), LMCI (p = 0.043), and HC and LMCI (p = 0.022) after Bonferroni
correction. At timepoint 2, the pattern was similar to timepoint 1 but
with higher corrected delta values (EMCI = 1.15 years, LMCI = 2.88,
AD = 6.59 years) (Fig. 4e-f, Table 5). These results demonstrate that our
model could capture the range of normal structural variation related to
age in healthy subjects and deviance in both MCI and AD patients.

The correlations between HC sample-corrected delta and various
clinical test scores were calculated with age as a covariate (Table 6). At
timepoint 1, the delta was negatively correlated with MMSE (r = —0.255,
p = 0.016) and positively correlated with FAQ (r = 0.275, p = 0.005)
in the entire sample. No correlations were found in individual diagnos-
tic groups or could not be calculated due to insufficient score data. At
timepoint 2, the delta was negatively correlated with MMSE (r = —0.303,
D = 2.40e-12) and positively correlated with CDR (r = 0.270, p = 7.35e-
10) and FAQ (r = 0.331, p = 2.31e-14) in the whole sample. In the
AD group, the delta was positively correlated with FAQ (r = 0.298,
p = 0.021) but not with MMSE or CDR. In the LMCI group, the delta was
positively correlated with FAQ (r = 0.309, p = 0.002), negatively corre-
lated with MMSE (r = —0.227, p = 0.022), and not correlated with CDR.
In the EMCI group, the delta positively correlated with CDR (r = 0.153,
p = 0.034) but not MMSE and FAQ scores. No correlations were found in
the HC group. The correlations with age, age?, and gender as covariates
were similar (Table S6).

We also found that the size of HC sample used for bias correction
considerably impacts the mean corrected delta in AD subjects (Fig. S7).
Specifically, with fewer HC subjects, the variance of the corrected delta
in AD was much higher in both sessions, e.g., at the timepoint 1 when
using 21 HC samples, the mean AD delta ranged between ~1-12 years
and converged to 4.47 years as the sub-samples approached the com-
plete sample.

3.6. Relationship of MAE with delta and delta-behavior correlations

Using 32 workflows selected from the cross-dataset evaluation, we
analyzed whether model performance (MAE) was associated with their
brain-behavior correlations. The corrected mean delta in AD ranged
from 5.43 to 10.01 years, with some relatively poor performing mod-
els yielding a higher delta in AD (Table S7). Lower accuracy (higher
MAE) was associated with stronger delta-MMSE correlation (Fig. 5c).
In contrast, lower MAE was associated with a stronger brain-behavior
correlations in the two healthy samples, delta-motor learning reaction
time in CamCAN, and delta-CWIT inhibition trial completion time in
eNKI datasets (Fig. 5a & b).
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Fig. 4. Brain-age delta in the clinical population. The box plot compares the delta between healthy control (HC), early mild cognitive impairment (EMCI), late mild
cognitive impairment (LMCI), and Alzheimer’s disease (AD) from the ADNI sample at (left) timepoint-1 and (right) timepoint-2. Box plot with a & d. uncorrected
delta. b & e. corrected delta using the CV predictions from the training set. ¢ & f. corrected delta using the predictions from HC-ADNI subjects.

Table 5
Prediction performance on the ADNI data from two timepoints using the best-performing (S4_R4 + PCA + GPR) workflow. Abbreviations: HC: healthy control, EMCI
and LMCI: early and late mild cognitive impairment, AD: Alzheimer’s disease.

Time-point ADNI N MAE MSE Corr (true, pred) Mean Mean corrected delta Mean corrected delta
sample delta (train samples) (ADNI-HC samples)
1 HC 209 6.56 61.19 r=0.76, p = 4.67e-40 -5.97 -5.18 0.00
EMCI 237 5.76 52.30 r=0.72,p = 1.07e-38 -4.39 -3.78 0.85
LMCI 127 5.56 46.52 r=0.75, p = 4.30e-24 -3.57 -2.86 2.09
AD 125 5.18 44.29 r=0.66, p = 5.00e-17 -2.13 -1.20 4.47
2 HC 153 6.56 62.73 r=0.73, p = 5.46e-27 —6.05 -5.27 0.00
EMCI 197 5.57 50.82 r=0.73,p = 1.23e-34 —4.32 -3.66 1.15
LMCI 104 5.68 47.75 r=0.72, p = 6.54e-18 -3.25 —2.44 2.88
AD 61 5.31 44.12 r=0.59, p = 6.09e-07 -0.76 0.31 6.59
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Table 6

Pearson’s correlation coefficients between corrected brain-age delta using S4_R4 + PCA + GPR workflow and cognitive measures (MMSE, CDR, and FAQ) using age
as a covariate from the ADNI sample. The correlations were computed for the whole sample and each diagnostic group (HC, EMCI, LMCI and AD) separately from
two timepoints. Abbreviations: MMSE: Mini-Mental State Examination, CDR: Global Clinical Dementia Rating Scale, FAQ: Functional Assessment Questionnaire; HC:
healthy control, EMCI and LMCI: early and late mild cognitive impairment, AD: Alzheimer’s disease.

Timepoint-1 Timepoint-2

MMSE CDR FAQ MMSE CDR FAQ
HC N=168 N =67 N=74 N =153 N =147 N =149

r=-0.202,p =0.101 r=0.025,p=0.841 r=0.153,p=0.196 r=-0.065, p = 0.427 r=-0.019, p = 0.819 r=0.070, p = 0.399
EMCI N=3 N=3 N=3 N =196 N =194 N =193

n.a. n.a. n.a. r=-0.079, p = 0.272 r=0.153, p = 0.034 r=0.091,p =0.211
LMCI N=2 N=2 N=2 N=103 N =102 N =103

n.a. n.a. n.a. r=-0.227, p = 0.022 r=0.115,p = 0.253 r=0.309, p = 0.002
AD N=17 N=17 N=26 N=61 N=61 N=61

r=-0.435, p = 0.092 r=0.221,p=0.412 r=0.244,p =0.240 r=-0.186, p = 0.155 r=0.218, p = 0.094 r=0.298, p = 0.021
Whole sample N =90 N=289 N=105 N=513 N =504 N =506

r=-0.255,p=0.016 r=0.114,p=0.290 r=0.275,p=0.005 r=-0.303,p=2.40e-12 r=0.270,p=7.35e-10 r=0.331,p = 2.31e-14
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Fig. 5. Correlation between MAE and delta-behavioral correlations obtained using 32 workflows a. CamCAN (N = 302) b. eNKI (N = 340) c. ADNI (N = 61). For
CamCAN and eNKI data, the within-dataset delta-behavior correlations with age as a covariate were used. For ADNI data, we used the delta-behavior correlations
using corrected delta (corrected using the HC sample) with age as a covariate.
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Fig. 6. Comparison of our best workflow (S4_R4 + PCA + GPR) with the brainageR model on a. CoRR dataset (left) the box plot comparing predicted age from
two models with true age using a sub-sample of 107 subjects, (center) the scatter plot between the chronological (true) age and predicted age, (right) the scatter
plot between the chronological (true) age and brain-age delta. b. OASIS-3 dataset (for visual clarity, the box plot is created using a random sub-sample; N = 120) c.
MyConnectome dataset (the red cross indicates the outlier scan that was removed from the analysis; final N = 19). d. Performance metrics for all datasets. For the
CoRR dataset, the table shows average values from 100 iterations of sub-sampled data, but the plots are from one iteration.

3.7. Comparison with brainageR and effect of preprocessing and tissue
types

Next, we compared the S4 R4 + PCA + GPR workflow and the
brainageR model both trained on the same data using the CoRR, OASIS-
3, and MyConnectome datasets (Fig. 6).

In CoRR dataset, S4_R4 + PCA + GPR (mean MAE = 4.69, r = 0.947,
bias r = —0.377) performed better than brainageR (mean MAE = 4.91,
r = 0.946, bias r = —0.128) in MAE (paired t-test: t = —8.04, p = 1.97e-
12) but brainageR showed a lower mean age bias (Steiger’s Z test
(Steiger, 1980) z = —3.31, p = 0; Figs. 6a & S8). There was no significant
difference between the mean true and predicted age correlations from
two models (z = 0.133, p = 0.447).

S4 R4 + PCA + GPR (MAE = 4.74, r = 0.836, bias r = —0.092)
also showed lower MAE than brainageR (MAE = 5.07, r = 0.805, bias
r = —0.058) on the OASIS-3 dataset (Fig. 6b). The predicted ages (paired
t-test: t = —1.37, p = 0.17) and the bias (z = —1.031, p = 0.151) of the
two models were similar but the r value for our model was significantly
higher (z = 3.101, p = 0.001). Test-retest reliability on a sub-sample
of the OASIS-3 dataset (retest duration < 3 months) was higher for
brainageR (CCC = 0.94 vs. 0.82 for S4_ R4 + PCA + GPR). Both mod-
els did not show longitudinal consistency at a retest duration of 3-4
years.

Additionally, S4_R4 + PCA + GPR workflow (MAE = 4.13) performed
significantly better than brainageR (MAE = 7.18) on the MyConnectome
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dataset (paired t-test: t = 9.60, p = 1.66e-08; Fig. 6¢). Note that one out-
lier scan (true age = 48) was excluded from this analysis (final N = 19).

To gain insight into the impact of preprocessing, we compared
within-dataset performance of our workflow using SPM preprocessing
on IXI and CamCAN datasets. On both datasets, CAT-derived GM fea-
tures performed better (IXI: MAE = 4.85 years; CamCAN: MAE = 5.01)
than SPM-derived GM features (IXI: MAE = 6.25; CamCAN: MAE = 5.82)
(Table 7). SPM-derived features from three tissue types performed better
(IXI: MAE = 5.08; CamCAN: MAE = 4.88) than using only SPM-derived
GM features, indicating that different tissue types carry complementary
information (Table 7).

4. Discussion
4.1. Effect of feature space and ML algorithm

The wide range of options available for designing brain-age estima-
tion workflows makes it challenging to disentangle the effect of feature
space and ML algorithms. To this end, we investigated 128 workflows
constituting combinations of 16 feature representations (voxel-wise and
parcel-wise) extracted from GMV images and eight ML algorithms.

Previous studies have shown that the age prediction MAE ranges be-
tween ~5-8 years for broad age range data (18-90 years) when using
GMYV features (Table S1). Our workflows showed performance in a sim-
ilar range, with some of the workflows generalizing well to data from a
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Table 7
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Comparison of within-dataset performance between models trained with CAT-preprocessed GM features (S4_R4 + PCA + GPR; our framework), SPM-
preprocessed GM features (S4_R4gp) + PCA + GPR) and SPM-preprocessed GM+WM-+CSF features (S4_R4¥MtCSF 4+ PCA + GPR) on IXI and CamCAN data.
Abbreviations: MAE: mean absolute error, MSE: mean squared error, Corr (true, pred): Pearson’s correlation between true age and predicted age, Age bias: Pearson’s

correlation between true age and brain-age delta.

Workflow MAE MSE Corr (true, pred) Age bias
IXI (N = 562) S4_R4 + PCA + GPR 4.85 36.89 r=0.93, p = 1.03e-247 r=-0.21, p = 7.39¢-07
S4_Rédgpy + PCA+GPR 6.25 62.34 r=0.88,p =1.15¢-181 r=-0.40,p = 1.61e-22
S4_R4YMICSE 4 PCA+GPR 5.08 40.80 r=0.92, p = 3.98¢-234 r=-0.27,p = 1.64e-10
CamCAN (N = 650) S4_R4 + PCA + GPR 5.01 40.89 r=0.94, p = 6.45e-307 r=-0.17,p = 1.14e-05
S4_R4gpy + PCA+GPR 5.82 56.83 r=0.92, p = 3.87e-258 r=-0.30, p = 2.66e-15
S4_RAYNICSE 4 PCA+GPR 4.88 39.77 r=0.94, p = 8.29e-308 r=-0.25,p = 1.53e-10

new site. Specifically, the MAE ranged between 4.90-8.48 years in CV
and 4.73-8.38 years in test data for within-dataset analysis and for cross-
dataset analysis between 4.28-7.39 years and 5.23-8.98 years in CV
and test data, respectively. The test MAE and R? were highly correlated
for both within-dataset and cross-dataset analysis (Tables S2 & S3, Fig.
S5). The workflows showed high positive correlations between chrono-
logical age and predicted age for within-dataset (r between 0.81-0.93)
and cross-dataset (r between 0.82-0.93) analyses. The workflows that
performed well in within-dataset analysis also performed well in cross-
dataset analysis. The lower cross-dataset CV MAE (4.28-7.39 years)
compared to within-dataset CV MAE (4.90-8.48 years) might be because
of the larger sample sizes in the cross-dataset analysis or possible over-
fitting in smaller samples. This corroborates previous studies showing
lower errors with larger training sets (Baecker et al., 2021; de Lange
et al., 2022), contrary to others that have shown a negative correla-
tion between sample size and CV performance estimates (Wolfers et al.,
2015; Varoquaux, 2018). The age range of the training and test data
affects the performance estimates. Specifically, when using a narrow
age range, performance metrics such as MAE and RMSE are usually bet-
ter than broad age range evaluations (Cole, 2020; Peng et al., 2021;
de Lange et al., 2022). However, the lower errors and hence smaller
brain-age delta values in those cases are not necessarily due to better
model performance but rather because the predictions are closer to the
mean age of the group. Here, our focus was on broad age range mod-
els, and the errors we obtained are within the range of what has been
previously shown.

Our results showed that the choice of feature space and the ML al-
gorithm both affect the prediction error. In general, feature spaces de-
rived from voxel-wise GMV such as S4_R4, S4_R8, and SO_R4 in combina-
tion with GPR, KRR, RVRpoly, and RVRlin algorithms performed well in
the within-dataset analysis. The results were similar with PCA retaining
100% variance for some workflows but not all, especially the regularized
models (LR and ENR) showed lower performance after PCA (see Supple-
mentary Table S2). This might be because of the different biases of ML
algorithms, e.g., due to regularization. It is possible that the sparsity-
inducing penalization in addition to PCA leads to lower accuracy mod-
els. Some of these selected workflows also performed well on cross-
dataset analysis. Specifically, the voxel-wise GMV features smoothed
with a 4 mm FWHM kernel and resampled to a spatial resolution of
4 mm, without and with PCA (S4_R4 and S4_R4 + PCA) together with
the GPR algorithm performed best in both the within-dataset and cross-
dataset analyses. A previous study has reported a voxel size of 3.73 mm?
and a smoothing kernel of 3.68 mm as the optimal parameters for pro-
cessing GM images for brain-age prediction with a performance similar
to our workflows (Lancaster et al., 2018). In general, parcel-wise fea-
tures performed worse than voxel-wise features irrespective of the ML
algorithm used, suggesting that the GMV summarized from parcels leads
to a loss of age-related information. Our results align with a recent study
comparing several ML models (GPR-dot product kernel, RVR-linear ker-
nel, and SVR-linear kernel) trained on region-based and voxel-based
features with or without PCA on a narrower age range (47-73 years)
(Baecker et al., 2021). They found minimal differences in performance
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due to the ML algorithms with voxel-based features performing better
than region-based features.

Our results also indicate that the non-linear algorithm (GPR with RBF
kernel) and the kernel-based algorithms (KRR and RVR) outperformed
linear algorithms such as RR and LR. Surprisingly, the non-linear RFR
algorithm performed the worst irrespective of the feature space used
(Fig. S4). This suggests that capturing distributional information using
the RBF kernel, as we did using GPR, and use of kernels that capture the
similarity between the GMV features in an invariant manner (e.g., Pear-
son correlation) is beneficial. These results corroborate a recent study
that comprehensively evaluated 22 regression algorithms (test MAE be-
tween 4.63-7.14 years) in broad age range data (18-94 years) using
GMYV features and found SVR, KRR, and GPR with a diverse set of ker-
nels to perform well (Beheshti et al., 2022).

In sum, the smoothed and resampled voxel-wise data (such as S4_R4,
S4_R8) with either a non-linear or a kernel-based algorithm (GPR with
RBF kernel, KRR with polynomial kernel degree (1 or 2), and RVR with
linear and polynomial degree 1 kernels) are well suited for brain-age
estimation. Sometimes, especially with a large number of features, PCA
might help improve performance (Franke et al., 2010; Baecker et al.,
2021). However, we found the performance of these workflows with
and without PCA to be similar. Therefore, one could use the features
directly for immediate interpretability of the models; on the other hand,
if computation is a constraint, then the PCA retaining 100% variance
could be used without affecting the performance.

Future studies can investigate options to improve model generaliz-
ability, such as data harmonization to remove site effects and considera-
tions for population structure (e.g., over-representative of the Caucasian
population in the datasets used).

4.2. Test-retest reliability and longitudinal consistency

The brain-age estimates must be reliable within a subject. We found
the delta to be reliable over a short scan delay (CoRR: CCC = 0.95-0.98,
age range = 20-84; OASIS-3: CCC = 0.76-0.85, age range = 43-80).
The reliability of delta within a short scan duration has been reported
in previous studies. For example, one study showed an intraclass
correlation coefficient (ICC) of 0.96 between deltas from subjects
scanned an average of 28.35 + 1.09 days apart (N = 20, mean age at
first scan = 34.05 + 8.71) (Cole et al., 2017). Another study showed
an ICC of 0.93 in young adults from the OASIS-3 dataset (N = 20,
age range = 19-34) scanned within a short delay of less than 90 days
(Franke and Gaser 2012). Another study found an ICC of 0.81 with a
mean interval of 79 days between scans (N = 20, chronological age = 45
years) (Elliott et al., 2021).

Longitudinal consistency, i.e., chronologically proportionate in-
crease in predicted age, is crucial for real-world application. Previous
studies have shown lifestyle interventions, such as meditation and ex-
ercise (Luders et al., 2016; Steffener et al., 2016), can have positive
effects on brain-age, while factors such as smoking and alcohol intake
can have adverse effects (Bittner et al., 2021). For instance, 18 months
of lifestyle intervention, including diet change and physical activity,
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showed attenuated brain-age in a longitudinal sample which correlated
with improvement in several physiological measures (Levakov et al.,
2022).Thus, lifestyle can lead to different longitudinal brain-age trajec-
tories. However, in our analyses, we assumed that there were no such
interventions over the retest duration as the datasets did not provide
such information. With this assumption, we expected brain-age to in-
crease proportionally with chronological age.

In support of this assumption, we found a positive linear relationship
between the difference in predicted age and the difference in chronolog-
ical age at a retest duration of 2-3.25 years (N = 26; r = 0.447, p = 0.022)
in the CoRR dataset. However, there was no correlation in the OASIS-
3 dataset with a retest duration of 3-4 years (N = 127; r = —0.008,
p = 0.932). Thus, the evidence of longitudinal consistency was weak.
This can be speculatively explained by the maximum test-retest dura-
tion of 34 years which lies within the range of the MAE for the OASIS-3
dataset (MAE session-1: 5.08 and session-2: 5.86 years, Table S4). Taken
together, the high reliability supports the use of brain-age in clinical set-
tings; however, further evaluations are needed to establish longitudinal
consistency.

4.3. Effect of bias correction

Most brain-age estimation workflows produce biased results, i.e.,
overestimation at younger ages and underestimation at older ages
(Liang et al., 2019). Therefore, correcting this age bias is important to
facilitate individual-level decisions. Here, we adopted a bias correction
model that does not use the chronological age of test samples for cor-
rection (Cole, 2020), as using chronological age can hamper fair com-
parison between workflows (de Lange et al., 2022).

The tested workflows generally showed negative associations be-
tween chronological age and delta for both within-dataset (r between
—0.22 to —0.83) and cross-dataset (r between —0.27 to —0.75) predic-
tions. However, this age bias was less pronounced in more accurate mod-
els (Fig. S5). This result is in line with the previous work (de Lange et al.,
2022) that showed that if input features are not informative enough
to predict age, predictions will be closer to the median or mean age,
leading to this bias. Additionally, we found that the data used to esti-
mate the bias correction models can significantly impact the corrected
delta. Specifically, within-dataset-derived models corrected the age bias
more adequately than cross-dataset models (Fig. S3). This discrepancy
might be due to the difference in data properties, e.g., scanner-specific
idiosyncrasy, between the training and the out-of-site test data. Our re-
sults suggest that a bias correction model might not always work well
when applied to a new site, even when the training data itself consists
of multiple sites. Consequently, using part of the test data to correct the
age bias in the remaining test data works well (as seen in the ADNI data
analysis, Section 3.5). However, this might not be feasible when the test
sample is small or in the extreme case, a single test subject is available.

How much data is needed for learning a bias correction model is
an important but unexplored question. We investigated this by learn-
ing bias correction models from sub-samples of the HC subjects from
ADNI data. Smaller samples led to higher variance in the efficacy of
bias correction models when applied to AD patients (Varoquaux, 2018).
For instance, at the smallest sample size (N = 21), the average corrected
delta of the AD patients varied from 1 to 12 years (Fig. S7, ADNI time-
point 1). It is likely that different studies use different samples for bias
correction, so the results should be interpreted and compared with cau-
tion. This result shows the importance of using large samples for bias
correction and emphasizes careful analysis and reporting of the results.

4.4. Correlation with behavior

Using the selected workflow we observed that the correlation of delta
with behavioral measures is sensitive to whether the delta was adjusted
for age, either via bias correction or using it as a covariate. For instance,
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the uncorrected delta was not correlated with FI and motor learning re-
action time (in CamCAN data) or CWIT inhibition trial completion time
(in eNKI data); however, significant correlations were obtained using
age-adjusted delta (Table 4). Thus, it is important to control for age
when analyzing correlations between delta and behavioral measures.

Using out-of-sample predictions from within-dataset analysis, we
found that a higher uncorrected delta (with age as a covariate) was as-
sociated with lower FI, higher motor learning reaction time (from Cam-
CAN data), and lower response inhibition and selective attention, indi-
cated by higher CWIT inhibition trial completion time (from eNKI data).
We expected these correlations to be similar to correlations calculated
using corrected delta (de Lange and Cole, 2020), as there was no signif-
icant age bias. In the CamCAN data, the behavioral correlations using
uncorrected delta with age as a covariate and corrected delta were quite
similar (FI: r = —0.154, p = 0.0001 vs. r = —0.157, p = 7.24e-05; motor
learning reaction time: r = 0.181, p = 0.002 vs. r = 0.186, p = 0.001).
However, the correlation of CWIT inhibition trial completion time with
uncorrected delta with age as a covariate was significant but not when
using the corrected delta (r = 0.109, p = 0.045 vs. r = 0.094, p = 0.084).
This slight difference could potentially be explained by the small effect
size and differences inherent in the two methods used for correction.

We also found that there was disagreement between delta-behavior
correlations from within-dataset and cross-dataset predictions with age
as a covariate. For instance, CamCAN showed significant correlations
with FI and motor learning reaction time with within-dataset delta but
not with cross-dataset delta. On the other hand, eNKI showed signifi-
cant correlations only with CWIT inhibition trial completion time us-
ing within-dataset delta, but a significant correlation with TMT com-
pletion time was found using cross-dataset delta. These results indicate
that the subtle differences in predictions can impact behavioral corre-
lations, even though the two predictions were highly correlated (Cam-
CAN: r = 0.961, eNKI: r = 0.962; Fig. S6). Thus, the delta-behavior cor-
relations, whether using within-dataset or cross-dataset delta, should be
interpreted with caution.

Taken together, within-dataset data yields better bias correction
models, as we observed in two scenarios, behavioral correlations and
delta estimation. However, when enough data are not available, the re-
sulting models may fail to correct the age bias, leading to high variability
in the mean delta (Fig. S7). We therefore caution the practitioners and
recommend carefully assessing bias correction models, e.g., using boot-
strap analysis, before application. We observed that subtle differences in
predicted age (within-dataset vs. cross-dataset) lead to different behav-
ioral correlations, which can question the impact of the workflow used
for prediction, the analysis method used for computing behavioral cor-
relation (corrected delta versus covariates) and their interaction. Future
studies should focus on disentangling such intricacies before applying
the brain-age paradigm in practice.

4.5. Higher brain-age delta in neurodegenerative disorders

Neurodegenerative disorders such as AD, MCI, and Parkinson’s dis-
ease (PD) are accompanied by brain atrophy. Many studies have shown
a decrease in global and local GMV in MCI and AD (Good et al., 2001;
Karas et al., 2004; Fjell et al., 2014) and also in a broad range of neu-
ropsychiatric disorders (Kaufmann et al., 2019). Consequently, an in-
creased delta, i.e., older appearing brains, has been reported in patients
with MCI (3-8 years) and AD (~10 years) (Franke and Gaser 2012;
Gaser et al., 2013; Varikuti et al., 2018). We assessed the delta in HC,
EMCI, LMCI, and AD patients by applying our best-performing workflow
followed by a bias correction model estimated on HC. We found that
brain aging is advanced by ~4.5-7 years in AD, ~2-3 years in LMCI,
and ~1 year in EMCI (timepoint 1-timepoint 2; Table 5). Furthermore,
the delta was correlated with measures associated with disease severity
and cognitive impairment in MCI and AD patients. Thus, in line with
previous studies, brain-age delta confirmed its potential to indicate ac-
celerated brain aging in neurodegenerative diseases based on structural
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MRI data (Franke and Gaser, 2012; Varikuti et al., 2018; Cole et al.,
2020; Eickhoff et al., 2021; Lee et al., 2021).

We also show that different workflows can lead to different delta
estimates in AD and, consequently, different correlations with cognitive
measures (Table S7). In addition, the mean corrected delta in the patient
group depends on the type (within-dataset or cross-dataset) and size of
sample used for bias correction (Figure S7). Thus, the results should be
interpreted with caution when comparing different studies.

4.6. Relationship of MAE with delta and delta-behavior correlations

The utility of age prediction models lies in their application to cap-
ture atypical aging. However, to achieve this, it is imperative to min-
imize the methodological variance, due to decisions in feature space
and ML algorithms, by building accurate models so that the resulting
brain-age delta captures biological variance. A recent study has shown
that delta from overfitted models (i.e., with higher training accuracy)
results in smaller differences in AD vs. CN, while delta from a model
with comparatively lower (training) accuracy captures biological vari-
ance (Bashyam et al., 2020). However, our analyses and model selection
was based on nested cross-validation. Therefore, our accurate models
cannot be considered overfitted.

In healthy samples, higher accuracy (lower MAE) was associated
with higher delta-motor learning reaction time (CamCAN) and delta-
CWIT inhibition trial completion time (eNKI) associations. In contrast,
in AD patients, models with lower accuracy (higher MAE) showed a
stronger delta-MMSE correlation. This observation that some less accu-
rate models can better capture the delta-behavioral correlation better
in AD is in line with a previous study (Bashyam et al., 2020) (Fig. 5
and Table S7). These contrasting observations in healthy and patient
cohorts make it difficult to develop a model selection strategy based on
delta-behavioral correlations.

The corrected mean delta in AD (corrected using the CN sample,
indicative of separation between CN and AD), for the 32 workflows
ranged from 5.43 to 10.01 years. Some moderately accurate models,
e.g., SO_R4 + LR (delta = 7.27, MAE = 5.91 years), showed a high delta
for AD and a strong correlation with AD scales (Table S7). However,
the model with the highest delta (173 + RFR: delta = 10.01, MAE:
9.07 years) showed a comparatively weaker correlation with behav-
ior. Moreover, similarly performing models (SO_R4 + LR: delta = 7.27,
MAE = 5.91 years vs. S8_ R4 + KRR: delta = 7.17, MAE = 6.59 years)
showed quite different correlation with behavior. This indicates a non-
linear relationship between the models’ MAEs, deltas, and behavioral
correlations.

Based on these results, we speculate that perhaps using adequately
regularized models in the patient population can be beneficial even if
they show a lower accuracy. It might be possible that regularization
pushes the models to focus on fewer specific features containing typical
aging-related signal. This in turn could lead to lower accuracy models
(as it downweighs some features) but also leads to delta estimates that
are more informative of atypical aging.

Taken together, comparing models based on their performance on
patient data and delta-behavior correlations is a promising but open
topic. In particular, it is unclear which delta-behavioral correlation to
use, and generalizability of models across behavioral scores, samples,
and disorders remains unknown. Further studies are needed to define
appropriate procedures for model selection based on such criteria.

4.7. Comparison with brainageR and effect of preprocessing and tissue
types

Using the same training data as brainageR, our workflow outper-
formed brainageR in terms of MAE in three datasets; CoRR (N = 107;
mean MAE = 4.69 vs. 4.91), OASIS-3 (N = 806; MAE = 4.74 vs. 5.07),
and MyConnectome (N = 19; MAE = 4.13 vs. 7.18). However, the bias of
our model was similar or higher than that of brainageR and its test-retest
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reliability was lower (OASIS-3, N = 36; CCC = 0.82 vs. CCC = 0.94).
Overall, our workflow showed lower MAE, higher correlation between
true and predicted age but also higher age bias compared to brainageR.
These differences are likely driven by differences in preprocessing, and
the use of three tissue types by brainageR as opposed to us using only
GM. To investigate this further, we performed two additional analyses.

Different VBM tools can provide different GMV estimates, in-
fluencing the estimated association with age (Tavares et al., 2019;
Antonopoulos et al., 2023). The CAT-derived GMV features performed
better than SPM preprocessing (both with S4_ R4 + PCA for feature ex-
traction together with the GPR algorithm for learning) in terms of MAE
(e.g., IXI: MAE = 4.85 vs. 6.25), the correlation between true and pre-
dicted age (r = 0.93 vs. 0.88, p < 1e-6 both) and age bias (r = —0.21 vs.
r=-0.40, p < 1e-6 both) (Table 7). We further found that the predictions
when using three tissue types from SPM (GM, WM, and CSF) were better
(IXI: MAE = 5.08, r = 0.92, p < le-6, bias: r = —0.27, p < le-6). This is
in line with a previous study that showed a slight performance improve-
ment when using both GM and WM compared to only GM (Cole et al.,
2017). Features from different tissue types may carry complementary
information regarding age, providing better predictions and lower age
bias. Many previous studies have used GM and WM together as features
(Franke and Gaser, 2012; Cole et al., 2017; Cole et al., 2018, 2020), and
others have used all three tissue types (Monté-Rubio et al., 2018; Xifra-
Porxas et al., 2021; Hobday et al., 2022). CAT-derived GMV performed
similarly to SPM-derived three tissue types with slightly lower age bias
for the former (Table 7), showing the suitability of GM for this task fol-
lowing its clinical relevance in neurodegenerative disorders (Karas et al.,
2004; Wu et al., 2021). Further studies are needed to cleanly disentangle
the effect of tissue types on different performance criteria investigated
here.

5. Conclusion

Numerous choices exist for designing a workflow for age prediction.
The systematic evaluation of different workflows on the same data in
different scenarios (within-dataset, cross-dataset, test-retest reliability,
and longitudinal consistency) revealed a substantial impact of feature
representation and ML algorithm choices. Notably, voxel-wise GM fea-
tures, especially smoothed with a 4 mm FWHM kernel and resampled to
a spatial resolution of 4 mm (S4_R4), were better than parcel-wise fea-
tures. Additionally, performing PCA did not affect the prediction perfor-
mance, but it can help reduce computational resources. ML algorithms,
including Gaussian process regression with the radial basis kernel, ker-
nel ridge regression with polynomial kernel degree 1 or 2, and rele-
vance vector machine with linear and polynomial degree 1 kernels, per-
formed well. Overall, some workflows performed well on out-of-site data
and showed high test-retest reliability but only moderate longitudinal
reliability. Consistent with the literature, we found a higher delta in
Alzheimer’s and mild cognitive impairment patients after correcting the
delta with a large sample of controls. Our results provide evidence for
the potential future application of delta as a biomarker but also caution
regarding analysis setup and data used for behavioral correlations and
bias correction. Findings from the current study can serve as guidelines
for future brain-age prediction studies.
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