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Abstract 14 

The difference between age predicted using anatomical brain scans and chronological age, i.e., 15 

the brain-age delta, provides a proxy for atypical aging. Various data representations and 16 

machine learning (ML) algorithms have been used for brain-age estimation. However, how 17 

these choices compare on performance criteria important for real-world applications, such as; 18 

(1) within-dataset accuracy, (2) cross-dataset generalization, (3) test-retest reliability, and (4) 19 

longitudinal consistency, remains uncharacterized. We evaluated 128 workflows consisting of 20 

16 feature representations derived from gray matter (GM) images and eight ML algorithms 21 

with diverse inductive biases. Using four large neuroimaging databases covering the adult 22 

lifespan (total N = 2953, 18-88 years), we followed a systematic model selection procedure by 23 

sequentially applying stringent criteria. The 128 workflows showed a within-dataset mean 24 

absolute error (MAE) between 4.73-8.38 years, from which 32 broadly sampled workflows 25 

showed a cross-dataset MAE between 5.23-8.98 years. The test-retest reliability and 26 

longitudinal consistency of the top 10 workflows were comparable. The choice of feature 27 

representation and the ML algorithm both affected the performance. Specifically, voxel-wise 28 

feature spaces (smoothed and resampled), with and without principal components analysis, 29 

with non-linear and kernel-based ML algorithms performed well. Strikingly, the correlation of 30 

brain-age delta with behavioral measures disagreed between within-dataset and cross-dataset 31 

predictions. Application of the best-performing workflow on the ADNI sample showed a 32 

significantly higher brain-age delta in Alzheimer’s and mild cognitive impairment patients. 33 

However, in the presence of age bias, the delta estimates in the patients varied depending on 34 

the sample used for bias correction. Taken together, brain-age shows promise, but further 35 

evaluation and improvements are needed for its real-world application. 36 

 37 

Keywords: Brain-age estimation; Healthy aging; Machine learning; Regression analysis  38 
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1. Introduction 39 

Precision and preventive medicine, e.g., early detection of Alzheimer’s disease (AD), can 40 

benefit from individual-level quantification of atypical aging. Machine learning (ML) 41 

approaches, together with large neuroimaging datasets can provide such individualized 42 

predictions. Indeed, ML algorithms can capture the multivariate pattern of age-related changes 43 

in the brain associated with healthy or typical aging (Franke et al. 2010; Varikuti et al. 2018; 44 

Cole 2020; Beheshti et al. 2022; Hahn et al. 2022). Such a model can then be used to predict 45 

age, i.e., brain-age, from an unseen subject’s image. Being a normative model, a large deviation 46 

between the chronological and the predicted age is indicative of atypical aging. A higher 47 

positive difference between the brain-age and chronological age, i.e., brain-age delta (which 48 

we refer to simply as delta), indicates “older-appearing” brains. As an indicator of future risk 49 

of experiencing age-associated health issues, delta quantitatively relates to several age-related 50 

risk factors and general physical health, such as weaker grip strength, poorer lung function, 51 

history of stroke, greater frequency of alcohol intake, increased mortality risk (Cole et al. 2018; 52 

Cole 2020), and poorer cognitive functions such as fluid intelligence, processing speed, 53 

semantic verbal fluency, visual attention, and cognitive flexibility (Cole et al. 2018; Boyle et 54 

al. 2021; Richard et al. 2018; Gaser et al. 2013; Cole, Underwood, et al. 2017). Overall, the 55 

delta can potentially serve as an omnibus biomarker of brain integrity and health if its 56 

reliability, given different ML workflow designs and other analyses, can be established. 57 

 58 

Studies have shown global and local gray matter (GM) volume (GMV) loss (Good et al. 2001; 59 

Galluzzi et al. 2008; Giorgio et al. 2010) with aging and accelerated loss in neurodegenerative 60 

disorders (Good et al. 2001; Karas et al. 2004; Fjell et al. 2014). This makes GMV a clinically 61 

relevant candidate for the investigation of atypical aging via brain-age estimation (Franke et 62 

al. 2010; Cole et al. 2015). Brain-age prediction models tend to perform better using GMV than 63 

white matter volume (WMV) (Cole, Poudel, et al. 2017; Monté-Rubio et al. 2018), making 64 

GMV a promising candidate for further investigation. Furthermore, by reducing the 65 

methodological and data-related variance in a model’s prediction error, the delta can better 66 

reflect a biological signal related to atypical aging. Thus, we aimed to identify accurate 67 

workflows using GMV-derived features.  68 

 69 

A brain-age estimation workflow consists of a feature space and an ML algorithm, and several 70 

choices exist for each. For instance, voxel-wise data with additional smoothing and/or 71 
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resampling or parcel-wise averages within a brain atlas can be used as features (Varikuti et al. 72 

2018; Eickhoff et al. 2021). Further dimensionality reduction methods such as principal 73 

components analysis (PCA)  can improve the observations-to-features ratio and signal-to-noise 74 

ratio (Franke et al. 2010; Franke et al. 2013; Gaser et al. 2013). One also needs to choose from 75 

a large pool of ML algorithms, such as relevance vector regression (RVR), and Gaussian 76 

process regression (GPR), many of which have shown success in brain-age estimation. These 77 

choices are known to affect performance (Gutierrez Becker et al. 2018; Baecker et al. 2021; de 78 

Lange et al. 2022).  79 

 80 

Studies using voxel-based morphometry (VBM)-derived GMV to predict brain-age have 81 

claimed prediction errors of ~5-8 years in healthy individuals (Table S1). However, it is 82 

difficult to compare these studies as they differ in experimental setup and methodology, such 83 

as feature space used, ML algorithms, age range, and evaluation criteria. For a brain-age 84 

estimation model to be used in real-world applications, it must perform well on several 85 

evaluation criteria; (1) a model should generalize well on new data from the training site as 86 

well as on data from novel sites, (2) estimated age must be reliable on repeated measurements, 87 

and (3) it should also exhibit longitudinal consistency, i.e., the predicted age should be 88 

proportionally higher for later scans after a longer duration, assuming no significant change in 89 

lifestyle or health-related interventions between the measurements. 90 

 91 

A critical aspect, especially for clinical application, is the commonly reported negative 92 

correlation between delta and true age (Beheshti et al. 2019; Smith et al. 2019; de Lange and 93 

Cole 2020). This may result in spurious correlations between the delta and non-imaging 94 

measures when chronological age is not accounted for (Franke et al. 2013; Löwe et al. 2016). 95 

This age bias complicates or may even mislead downstream individualized decision-making. 96 

It can be mitigated using bias correction models; usually, linear regression predicting brain-97 

age or delta using chronological age (Le et al. 2018; Liang et al. 2019; Smith et al. 2019; de 98 

Lange et al. 2022).  The data source (within or cross-data) and size used to obtain bias 99 

correction models has substantial impact on quality of the model. Taken together, there is a 100 

gap in understanding the impact of the choices in designing brain-age workflows, and how they 101 

affect estimation and utility of individual-level delta. 102 

 103 

To fill this gap, we systematically assessed 128 workflows consisting of 16 feature spaces 104 

derived from GM images and eight ML algorithms with diverse inductive biases. Using several 105 
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large neuroimaging databases with a wide age range, we first evaluated these workflows for 106 

their within-dataset and cross-dataset performances. Next, we evaluated the test-retest 107 

reliability and longitudinal consistency of some top-performing workflows. Then, we assessed 108 

the performance of our best-performing workflow in a clinical sample. We investigated the 109 

correlations between delta and behavioral/cognitive measures in healthy and clinical cohorts 110 

and various factors affecting these correlations. We also compared our best-performing 111 

workflow with a publicly available model, brainageR. Several follow-up analyses were 112 

performed to investigate the effect of preprocessing (CAT vs. SPM) and tissue type (GM vs. 113 

GM+WM+CSF) choices on prediction performance. Finally, given recent evidence that lower 114 

accuracy models may capture atypical aging better (Bashyam et al. 2020), we investigated 115 

relationship between model performance and delta-behavior correlations. 116 

2. Material and Methods 117 

2.1 Datasets 118 

2.1.1 MRI data 119 

We used T1-weighted (T1w) magnetic resonance imaging (MRI) data from healthy subjects 120 

covering a wide age range (18-88 years, training data) from several large neuroimaging datasets 121 

( 122 

 123 

 124 

 125 

 126 

 127 

 128 

Table 1), including the Cambridge Centre for Ageing and Neuroscience (CamCAN, N = 651) 129 

(Taylor et al. 2017), Information eXtraction from Images (IXI, N = 562) (https://brain-130 

development.org/ixi-dataset/), the enhanced Nathan Kline Institute-Rockland Sample (eNKI, 131 

N = 597) (Nooner et al. 2012), the 1000 brains study (1000BRAINS; N = 1143) (Caspers et al. 132 

2014), Consortium for Reliability and Reproducibility (CoRR) (Zuo et al. 2014), the Open 133 

Access Series of Imaging Studies (OASIS-3) (LaMontagne et al. 2019), and the 134 
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MyConnectome dataset (Poldrack et al. 2015). The inclusion criteria were age between 18 and 135 

90 years, gender data available, and no current or past known diagnosis of neurological, 136 

psychiatric, or major medical conditions. The IXI dataset was acquired from multiple sites; 137 

however, we treat it as a single dataset representing typical data acquired in a noisy clinical 138 

setting. From the OASIS-3 dataset, we selected scans from healthy control subjects acquired 139 

on 3T scanners. Other datasets used for training brainageR were used for a fair comparison 140 

with our best workflow. The corresponding details are provided in the Supplementary Methods. 141 

We used the Alzheimer's Disease Neuroimaging Initiative (ADNI; https://adni.loni.usc.edu/) 142 

database to evaluate the utility of brain-age in neurodegenerative disorders (Jack et al. 2008; 143 

Petersen et al. 2010). We included 3T T1w images from healthy control subjects (HC, N = 144 

209), early and late mild cognitively impaired subjects (EMCI, N = 237; LMCI, N = 128), and 145 

Alzheimer's disease (AD, N = 125) subjects. For some of these subjects, data were available 146 

for the second timepoint 1-2 years apart (HC, N = 153; EMCI, N = 197; LMCI, N = 104; AD, 147 

N = 61) ( 148 

 149 

 150 

 151 

 152 

 153 

 154 

Table 1d).  155 

2.1.2 Non-imaging data 156 

We used various behavioral/cognitive measures to compute their correlations with delta. Fluid 157 

intelligence (FI; N = 631) assessed by the Cattell Culture Fair test and reaction time for the 158 

motor learning task (N = 302) from the CamCAN dataset (Taylor et al. 2017). From the eNKI 159 

dataset, we used a. the Color-Word Interference Test (CWIT) inhibition trial completion time 160 

(N = 340), b. the Trail Making Test (TMT) number-letter switching condition completion time 161 

(N = 344), c. Wechsler Abbreviated Scale of Intelligence (WASI-II) matrix reasoning scores 162 

(N = 347), and d. WASI-II similarities scores (N = 347) (Nooner et al. 2012).  163 

 164 
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Three cognitive tests from ADNI measuring disease severity were used; Mini-Mental State 165 

Examination (MMSE), Global Clinical Dementia Rating Scale (CDR), and Functional 166 

Assessment Questionnaire (FAQ).  167 

 168 

All the datasets except the 1000BRAINS data are available publicly. Ethical approval and 169 

informed consent were obtained locally for each study covering both participation and 170 

subsequent data sharing. The ethics proposals for the use and retrospective analyses of the 171 

datasets were approved by the Ethics Committee of the Medical Faculty at the Heinrich-Heine-172 

University Düsseldorf. 173 

 174 

 175 

 176 

 177 

 178 

 179 

Table 1. Sample characteristics of the datasets used in the current study. Datasets used a. for training 180 
within-dataset models. b. for training cross-dataset models. c. to evaluate test-retest reliability and 181 
longitudinal consistency of brain-age delta and comparison with brainageR (note: for CoRR full sample, 182 
the demographics are reported for the last iteration). d. to evaluate performance in clinical samples. 183 
Abbreviations: CamCAN: the Cambridge Centre for Ageing and Neuroscience, IXI: Information 184 
eXtraction from Images (includes 1.5 and 3T scans), eNKI: the enhanced Nathan Kline Institute-185 
Rockland Sample, CoRR: Consortium for Reliability and Reproducibility, OASIS-3: the Open Access 186 
Series of Imaging Studies, ADNI: the Alzheimer's Disease Neuroimaging Initiative, HC: healthy 187 
control, EMCI and LMCI: early and late mild cognitively impaired, AD: Alzheimer's disease 188 

a. 189 
Train dataset No. of subjects (N) Males/Females Age range Mean ± S.D. Median 
CamCAN 651 321/330 18 - 88 54.27 ± 18.58  54.50 
IXI 562 249/313 20 - 86 48.70 ± 16.44 48.85 
eNKI 597 188/409 18 - 85 48.25 ± 18.51 50.00 
1000BRAINS 1143 660/513 22 - 85 61.85 ± 12.39 63.60 

 190 
b. 191 

Train dataset Train N Test dataset Test N 
IXI + eNKI + 1000BRAINS 2302 CamCAN 651 
CamCAN + eNKI + 1000BRAINS 2391 IXI 562 
IXI + CamCAN + 1000BRAINS 2356 eNKI 597 
IXI + CamCAN + eNKI 1810 1000BRAINS 1143 
IXI + CamCAN + eNKI + 1000BRAINS 2953 CoRR, OASIS-3, MyConnectome, ADNI See below (c & d) 

 192 
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c. 193 
Dataset Data Filtering N 

(sessions) 
Males/ 
Females 

Age Range Mean ± S.D. Median 

CoRR Retest < 3 months  86 (2) 39/47 20.0 - 84.0  48.82 ± 18.28 49.00 
Retest 1 – 2 years 95 (2) 52/43 18.0 - 88.0 34.43 ± 22.51 20.00 
Retest 2 – 3.25 years 26 (2) 18/8 18.0 - 57.0 28.09 ± 11.89 24.50 
Full sample 107 51/56 18.0 – 88.0 49.99 ± 18.87 50.00 

OASIS-3  Retest < 3 months 36 (2) 21/15 42.66 - 80.90 63.46 ± 8.80 62.93 
Retest 3- 4 years 127 (2) 52/75 46.04 - 86.21 65.59 ± 8.39 65.90 
Full sample  806 338/468 43.00 - 89.00 69.07 ± 9.06 69.00 

MyConnectome Retest < 3 years 1 (20) 1/0 45.39 - 48.02 45.73 ± 0.58 45.56 

 194 
d. 195 

Dataset Disease  N Males/ 
Females 

Age Range Mean ± S.D. Median 

ADNI  
(Timepoint-1) 

HC 209 99/110 56.3 - 94.7 75.67 ± 6.94 75.50 
EMCI 237 128/109 55.7 - 88.7 70.88 ± 7.12 70.40 
LMCI 128 62/65 55.1 - 91.5 72.02 ± 7.89 72.55 
AD 125 65/60 56.0 - 91.0 74.68 ± 7.99 75.40 

ADNI  
(Timepoint-2) 

HC 153 70/83 57.3 - 95.8 75.89 ± 6.63 75.50 
EMCI 197 108/89 56.7 - 90.4 71.81 ± 7.04 71.10 
LMCI 104  51/53 56.1 - 92.5 73.36 ± 7.92 73.95 
AD 61 32/29 57.0 - 93.0 75.79 ± 7.83 76.80 

 196 

2.2 Data preparation 197 

All T1w images were preprocessed using the Computational Anatomy Toolbox (CAT) version 198 

12.8 (Gaser et al. 2022). To ensure accurate normalization and segmentation, initial affine 199 

registration of T1w images was done with higher than default accuracy (accstr = 0.8). After 200 

bias field correction and tissue class segmentation, accurate optimized Geodesic shooting 201 

(Ashburner and Friston 2011) was used for normalization (regstr = 1). We used 1 mm Geodesic 202 

Shooting templates and outputted 1 mm isotropic images. The normalized GM segments were 203 

then modulated for linear and non-linear transformations.  204 

 205 

For comparison with brainageR, we used corresponding preprocessing as implemented using 206 

SPM12 in MATLAB R2017b, which outputs three tissue segmentations (GM, WM, and CSF; 207 

see https://github.com/james-cole/brainageR/). 208 
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2.3 Workflows 209 

Each workflow consists of a feature representation and an ML algorithm. We evaluated 128 210 

workflows constituting 16 feature representations and eight ML algorithms.  211 

2.3.1 Feature representations 212 

The 16 feature representations were derived from the CAT-preprocessed voxel-wise GM 213 

images. Using voxel-wise data can lead to overfitting due to the curse of dimensionality owing 214 

to a large number of features compared to the number of samples. Hence, we implemented two 215 

dimensionality reduction approaches previously used for brain-age prediction.  216 

 217 

In the first strategy, we used voxel-wise GMV after smoothing and resampling (Franke et al. 218 

2010), which may also improve the signal-to-noise ratio. In the second strategy, we used an 219 

atlas to summarize data from distinct brain regions (called parcels). This resulted in 16 feature 220 

representations. 221 

1. SX_RY: A whole-brain mask was used to select 238955 voxels. Then, smoothing (S) 222 

with an X mm FWHM Gaussian kernel and resampling (R) using linear interpolation 223 

to Y mm spatial resolution were applied with X = {0, 4, 8} and Y = {4, 8}, resulting in 224 

six feature spaces (S0_R4, S0_R8, S4_R4, S4_R8, S8_R4, S8_R8; SX_R4: 29852 225 

voxels and SX_R8: 3747 voxels). 226 

2. SX_RY + PCA: Additionally, PCA (Jolliffe 2002) was applied to each SX_RY feature 227 

space while retaining 100% variance, creating another six representations (S0_R4 + 228 

PCA, S0_R8 + PCA, S4_R4 + PCA, S4_R8 + PCA, S8_R4 + PCA, S8_R8 + PCA). 229 

3. Parcel-wise: Four parcel-wise feature spaces were created by combining cortical {100, 230 

400, 800, 1200} parcels (Schaefer et al. 2018) with 36 subcortical (Fan et al. 2016) and 231 

37 cerebellum (Buckner et al. 2011) parcels. We calculated the mean GMV of all the 232 

voxels within each parcel (173, 473, 873, and 1273 features). 233 

2.3.2 Machine learning algorithms 234 

We included eight ML algorithms covering diverse inductive biases: ridge regression (RR), 235 

least absolute shrinkage and selection operator (LASSO) regression (LR), elastic net regression 236 

(ENR), kernel ridge regression (KRR), random forest regression (RFR), GPR, RVR with the 237 

linear kernel (RVRlin), and polynomial kernel of degree 1 (RVRpoly). These algorithms have 238 

been previously used in the prediction of age and other behavior variables from neuroimaging 239 



 

 

9 

data (Franke et al. 2010; Gaser et al. 2013; Su et al. 2013; Cole et al. 2015; Varikuti et al. 2018; 240 

Jonsson et al. 2019; Liang et al. 2019; Zhao et al. 2019; He et al. 2020; Baecker et al. 2021; 241 

Boyle et al. 2021; Lee et al. 2021; Peng et al. 2021; Treder et al. 2021; Vidal-Pineiro et al. 242 

2021; Beheshti et al. 2022; Cole 2020) (Table S1). Details of these algorithms are provided in 243 

the Supplementary Methods. 244 

 245 

Recently, deep-learning (DL) models have been applied for brain-age estimation with success 246 

(Jiang et al. 2019; Jonsson et al. 2019; Peng et al. 2021). However, in this work, we focus on 247 

conventional ML models for the following reasons: (1) ML models have shown competitive 248 

performance to DL models (Cole, Poudel, et al. 2017; He et al. 2020; Schulz et al. 2020; 249 

Grinsztajn et al. 2022), and (2) the resources required for ML are more readily available and 250 

thus still enjoy wider applicability with a lower computational footprint (Thompson et al. 2020; 251 

van Wynsberghe 2021).  252 

2.3.3 Learning setup and software 253 

The ML algorithm’s hyperparameters were estimated in a nested fashion using an inner cross-254 

validation (CV) (Varoquaux et al. 2017). Before training, features with low variance were 255 

removed (threshold < 1e-5), and the remaining features were Z-scored to have zero mean and 256 

unit variance. Any preprocessing steps, including PCA, were applied in a CV-consistent 257 

fashion to avoid data leakage, i.e., the parameters were estimated on the training set and applied 258 

to both the training and the test set (More et al. 2021). 259 

 260 

All the workflows were implemented in Python version 3.9.1 using the Julearn machine-261 

learning library (https://juaml.github.io/julearn/), which in turn uses the scikit-learn library for 262 

the learning algorithms KRR, GPR, and RFR (http://scikit-learn.org/) (Pedregosa et al. 2011). 263 

LR, RR, and ENR were implemented using the Python wrapper for glmnet 264 

(https://pypi.org/project/glmnet/) (Friedman et al. 2010). RVRlin and RVRpoly were 265 

implemented using the scikit-rvm package (https://github.com/JamesRitchie/scikit-rvm/). The 266 

codes used for preprocessing, feature extraction, model training and prediction are available at 267 

https://github.com/juaml/brainage_estimation. 268 
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2.4 Analysis setup 269 

Given data acquisition and site-related biases, it is important to identify a workflow that shows 270 

high accuracy in different evaluation scenarios. For instance, a workflow that works well on a 271 

dataset might not work well on another dataset. To accommodate such real-world scenarios, 272 

we followed a systematic procedure where the workflows were subjected to increasingly 273 

stringent evaluations ( 274 

Figure 1). In brief, we first evaluated the within-dataset CV performance of the 128 workflows. 275 

Next, 32 workflows characterizing the overall pattern of performance were selected for cross-276 

dataset evaluation. This selection was performed by uniformly sampling over the within-277 

dataset CV performance. This allows for the possibility that workflows with low within-dataset 278 

performance might perform well in cross-dataset evaluation. Finally, the top 10 workflows out 279 

of the 32 were evaluated for their test-retest reliability and longitudinal consistency. After 280 

considering all the evaluation criteria, the best-performing workflow was chosen and used for 281 

application on ADNI data and comparison with brainageR. Specific analysis steps are 282 

described below. 283 

 284 

 285 
Figure 1. The framework to select the best-performing workflow for brain-age prediction. A total of 286 

128 workflows were first evaluated for their within-dataset prediction performance using five-fold 287 

cross-validation (CV). Next, 32 workflows were selected based on the CV mean absolute error (MAE) 288 

and assessed for cross-dataset prediction performance. Within-dataset and cross-dataset evaluations 289 
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were performed using four datasets (CamCAN, IXI, eNKI and 1000BRAINS). Then, 10 workflows out 290 

of 32 were selected based on their test MAE and assessed for test-retest reliability and longitudinal 291 

consistency using OASIS-3 and CoRR datasets. The best-performing workflow was selected after 292 

considering all the evaluation criteria. 293 

2.4.1 Within-dataset and cross-dataset evaluations 294 

We evaluated the 128 workflows (see section 2.3) separately on four datasets, CamCAN, IXI, 295 

eNKI, and 1000BRAINS. This scenario assumes that enough within-dataset training data are 296 

available and is widely used in brain-age estimation work (Ashburner 2007; Su et al. 2013; 297 

Gutierrez Becker et al. 2018). To estimate a single out-of-sample brain-age for each subject, 298 

we used a 5-fold CV. For each hold-out (test) fold, the remaining 80% of the data were used 299 

for training and to obtain a generalization estimate using 5 times repeated 5-fold (5x5-fold) 300 

nested CV. All CV analysis was stratified by age to preserve the age distribution. It is important 301 

to obtain a single prediction per subject (as opposed to multiple predictions per subject if the 302 

outer CV were repeated) for further meaningful analyses, such as correlation with non-imaging 303 

measures. Consequently, we computed two measures, test performance, and CV performance. 304 

The test performance was obtained by averaging over the outer 5 folds. The CV performance 305 

was obtained by first averaging over the inner 5x5-fold CV and then over the outer 5-fold CV. 306 

Finally, the CV and test performance were averaged over the four datasets. The performance 307 

was evaluated using mean absolute error (MAE), Pearson’s correlation between predicted and 308 

true (chronological) age, and the coefficient of determination R2.  309 

 310 

We followed a systematic procedure to select a subset of workflows while maintaining 311 

diversity in terms of CV performance. Specifically, the workflows were arranged in the 312 

increasing order of their average CV MAE and divided into 16 groups. Next, the top two 313 

workflows (with the lowest CV MAE) from each group were selected. 314 

 315 

We tested these 32 selected workflows on cross-dataset to obtain sample-unbiased 316 

performance. This emulates the real-world scenario where data from the application site are 317 

not available, and the training and test data come from different sources with confounding 318 

effects, such as scanner hardware or operator inconsistencies (Jovicich et al. 2006; Chen et al. 319 

2014). Three out of four datasets (CamCAN, IXI, eNKI and 1000BRAINS) were pooled to 320 

form the training data, and the hold-out dataset was used as the test data. A 5x5-fold CV was 321 

performed on the training data to estimate the generalization performance with an internal CV 322 
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for hyperparameter tuning. The CV performance was averaged over 5x5-fold CV and then over 323 

the four hold-out datasets. The test performance was averaged over the four datasets. The 324 

performance was again evaluated using MAE, Pearson’s correlation between predicted and 325 

true age, and the coefficient of determination R2. 326 

 327 

The 32 workflows were arranged in increasing order of their average test MAE, i.e., their 328 

average performance on the hold-out datasets, from which the top 10 workflows were selected. 329 

2.4.2 Test-retest reliability and longitudinal consistency 330 

We then trained models using the 10 selected workflows with the four datasets combined as 331 

training data (IXI + eNKI + CamCAN + 1000BRAINS, N = 2953; Supplementary Figure S1). 332 

The test-retest reliability and longitudinal consistency of the delta were evaluated for the 10 333 

models using the OASIS-3 and CoRR datasets. 334 

 335 

To evaluate test-retest reliability, we used: two scans from the same subjects acquired within a 336 

delay of (1) less than three months (CoRR: N = 86, age range = 20-84 years, OASIS-3: N = 337 

36, age range = 43-81), and (2) between 1-2 years (CoRR: N = 95, age range = 18-88). The 338 

concordance correlation coefficient (CCC) (Lin 1989) between the delta (predicted age minus 339 

age at the scan time) from the two scans was calculated. 340 

 341 

To evaluate longitudinal consistency, two scans from the same subjects acquired with a retest 342 

duration (1) between 2-3.25 years (CoRR: N = 26, age range = 18-57), and (2) between 3-4 343 

years (OASIS-3: N = 127, age range = 46-86) were used. We computed Pearson’s correlation 344 

between the difference in the predicted age and the difference in chronological age from the 345 

two scans. A higher positive correlation here would indicate higher longitudinal consistency. 346 

 347 

By considering the results from the within- and cross-dataset analysis, test-retest reliability, 348 

and longitudinal consistency, we chose one best-performing workflow for further analysis. 349 

2.5 Bias Correction 350 

Many studies have reported age-dependency of the delta with over-prediction in young subjects 351 

and under-prediction in older subjects (Le et al. 2018; Liang et al. 2019), which renders the 352 

usage of delta as an individualized biomarker problematic. A common practice is to apply a 353 
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statistical bias correction to remove the effect of age from either the predicted age or the delta 354 

(Le et al. 2018; Liang et al. 2019; Smith et al. 2019; Cole 2020; de Lange and Cole 2020). Note 355 

that when calculating correlations of delta with non-imaging measures, bias correction is 356 

expected to be similar to partial correlation analysis when age is used as a covariate.  357 

 358 

Several alternatives are available for bias correction (de Lange et al. 2019; Cole 2020; de Lange 359 

and Cole 2020; Smith et al. 2019). We chose the method used by Cole and colleagues (Cole 360 

2020) as it does not use the chronological age of the test data, and thus avoids information 361 

leakage which can bias comparison between workflows by making low-performing workflows 362 

appear good (de Lange et al. 2022). Furthermore, this method is relevant for possible future 363 

applications like forensic investigations where test age is not available. A linear regression 364 

model was fitted with the out-of-sample (from the CV) predicted age as the dependent variable 365 

and chronological age as the independent variable using the training data. The predicted age in 366 

the test set was corrected by subtracting the resulting intercept and dividing by the slope.  367 

2.6 Correlation with cognitive measures  368 

To understand the effect of bias correction and the impact of covariates on delta-behavior 369 

correlations, we performed correlations of behavior/cognitive measures from CamCAN and 370 

eNKI datasets (see section 2.1.2) with (1) uncorrected delta, (2) uncorrected delta with age as 371 

a covariate, (3) corrected delta, and (4) corrected delta with age as a covariate. If the bias 372 

correction eliminates the antagonistic relation between delta and age, we expect (2), (3), and 373 

(4) to give similar correlations. Furthermore, to assess the impact of data used for training, we 374 

performed these analyses using delta obtained from within-dataset and cross-dataset 375 

predictions. 376 

2.7 Brain-age in clinical samples 377 

Next, we used the ADNI dataset (Jack et al. 2008; Petersen et al. 2010) to validate our best-378 

performing workflow on clinical samples. We estimated and compared the delta between HC, 379 

EMCI, LMCI, and AD subjects ( 380 

 381 

 382 

 383 
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 384 

 385 

 386 

Table 1d).  387 

 388 

Our best-performing workflow trained on the four datasets was used to obtain the predictions, 389 

followed by application of bias correction model (see section 2.5). We compared two bias 390 

correction models, one derived using the CV predictions from the four training datasets and 391 

another using HC samples in ADNI data (Franke and Gaser 2012). The group-wise corrected 392 

delta was compared using analysis of variance (ANOVA) followed by Bonferroni correction 393 

to counteract multiple comparisons. Emulating the scenario that application sites might have 394 

different numbers of HC samples, we learned bias correction models using HC sub-samples 395 

(0.1 to 0.9 fraction in steps of 0.1) drawn without replacement and applied them on the full HC 396 

and AD subjects. This process was repeated 100 times to estimate the variance of mean 397 

corrected delta in AD subjects. 398 

 399 

Finally, we investigated associations between the corrected delta and three clinical test scores, 400 

MMSE, CDR, and FAQ. The correlations were computed using the whole sample and different 401 

diagnostic groups separately using Pearson’s correlation with age as a covariate for both 402 

sessions separately. 403 

 404 

2.8 Relationship of MAE with delta and delta-behavior correlations 405 

Here, we sought to select a workflow that provides accurate and reliable predictions. We reason 406 

that a workflow that accurately predicts the age of healthy individuals captures the typical brain 407 

aging process, and thus, a large delta in new data can be considered indicative of atypical aging. 408 

However, recent evidence shows that an overfitted brain-age model (high training accuracy) is 409 

not the most sensitive in identifying pathologies (Bashyam et al. 2020). This study showed that 410 

a relatively moderately fit model yielded brain-age deltas with more significant group 411 

differences and the larger effect sizes between control and disease groups in various brain 412 

pathologies. 413 

 414 
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To investigate this possibility, we trained the 32 workflows selected from the cross-dataset 415 

analysis with four datasets pooled together for training and applied to timepoint 2 ADNI data. 416 

To understand how the model performance varies with its utility, we compared the models’ 417 

MAEs with the corrected mean delta in AD sample and examined whether it was related to the 418 

delta-behavior correlations. We then performed a similar analysis in two HC samples 419 

(CamCAN and eNKI) using corresponding within-dataset hold-out predictions.  420 

2.9 Comparison with brainageR and effect of preprocessing and tissue 421 

types 422 

We compared the performance of our best-performing workflow with an already available 423 

brain-age estimation model, brainageR. The brainageR model was trained on 3377 healthy 424 

individuals (age range: 18-92 years, mean ± SD age: 40.6 ± 21.4 years) from seven publicly 425 

available datasets using the GPR algorithm. It uses SPM12 to segment and normalize T1w 426 

images, from which GM, WM, and CSF vectors were extracted (using 0.3 probability masked 427 

brainageR-specific templates). PCA was used to reduce data dimensionality, and 435 428 

components explaining 80% of the variance were retained. Note that brainageR uses three 429 

tissue types, while our focus is on GM. 430 

 431 

To avoid bias due to different training data, for this comparison we used data from the same 432 

subjects used by brainageR (2 subjects could not be processed; Table S8). Next, using this 433 

training data, we trained our best-performing workflow using GMV extracted from CAT 12.8 434 

and compared the performance with already trained brainageR model on three datasets,  (1) 435 

CoRR (N = 107, sub-sampled to keep uniform distribution in age-range:18-88 years, repeated 436 

100 times; see Supplementary Methods for more details), (2) the OASIS-3 (N = 806; first scan 437 

per subject, age-range: 43-89 years), and (3) the MyConnectome study (one subject scanned 438 

20 times in a period of 3 years; age range: 45-48 years). Additionally, we used sub-samples 439 

from OASIS-3 with test-retest durations of (1) less than 3 months (N = 36, 43-81 years) and 440 

(2) between 3-4 years (N = 127, 46-86 years) to evaluate test-retest reliability and longitudinal 441 

consistency, respectively (see section 2.4.2). 442 

 443 

Next, we compared how the preprocessing and tissue types affect model performance. 444 

Following our focus on GMV, we compared; (1) CAT-preprocessed GMV, (2) SPM-445 

preprocessed GMV, and (3) SPM-preprocessed GM, WM, and CSF images following 446 
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brainageR. The latter investigates whether WM and CSF features provide complementary 447 

information leading to better predictions. For this, we performed within-dataset evaluation on 448 

IXI and CamCAN datasets (see section 2.4.1). 449 

3. Results 450 

3.1 Within-dataset and cross-dataset predictions 451 

For within-dataset analysis, the CV performance (average over 125 estimates–inner 5x5-fold 452 

CV, repeated 5 times, see section 2.4.1) and test performance based on single prediction per 453 

subject from the outer CV, were calculated. These were then averaged separately over four 454 

datasets.  455 

 456 

The average CV MAE (4.90-8.48 years) and the average test MAE (4.73-8.38 years) (Figure 457 

2a, Table S2) were similar, indicating that the nested CV generalization estimates are indeed 458 

indicative of their test performance. The correlation between the true and predicted age on the 459 

test data ranged from 0.81-0.93, while the age bias (correlation between true age and delta) 460 

ranged from -0.22 to -0.83 (Table S2). Overall, all workflows showed a high similarity in their 461 

predictions (correlations 0.83-0.99 averaged across the four datasets; Figure S2). The top 20 462 

workflows showed comparable CV and test MAE with a difference of less than 0.4 years.  463 

 464 

Well-performing workflows primarily consisted of voxel-wise smoothed and resampled 465 

feature spaces with and without PCA, with S4_R4 (smoothed with a 4 mm FWHM kernel and 466 

resampled to 4 mm spatial resolution) generally performing better. Some workflows with PCA 467 

performed similarly to their respective non-PCA version but not all (see Supplementary Table 468 

S2). GPR, KRR, RR, and both RVR algorithms generally ranked high. Most algorithms 469 

performed worse with parcel-wise features, while RFR generally exhibited the worst 470 

performance.  471 

 472 

The workflow S4_R4 + GPR performed the best (see  473 

 474 

Table 2a for its performance on each of the four datasets). This workflow showed the lowest 475 

average CV MAE with a high R2 and a high correlation between true and predicted age (Figure 476 

2b) but a relatively high age bias (Figure S3). The second-best workflow, S4_R4 + PCA + 477 
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GPR, performed similarly to the best workflow. Other workflows with the S4_R4 feature 478 

space, with or without PCA, together with the KRR, RVRpoly, and RVRlin algorithms, 479 

performed comparably. From the 128 workflows, we selected 32 workflows while preserving 480 

diversity in terms of CV MAE. 481 

 482 

Table 2. The performance metric for the best workflow for different datasets. A. Within-dataset 483 

prediction (using S4_R4 + GPR) b. Cross-dataset prediction (using S4_R4 + PCA + GPR). 484 

Abbreviations: MAE: mean absolute error between true and predicted age, MSE: mean squared error 485 

between true and predicted age, R2: the proportion of variance of predicted age explained by the 486 

independent variables in the model, Corr (true, pred): Pearson’s correlation between true and predicted 487 

age, Age bias: Pearson’s correlation between true age and brain-age delta 488 

 489 

Datasets N a. Within-dataset results b. Cross-dataset results 

  MAE MSE R2 Corr 
(true, pred) 

Age bias MAE MSE R2 Corr 
(true, pred) 

Age bias 

CamCAN 651 4.94 39.54 0.89 r = 0.94, 
p = 6.4e-309 

r = -0.42, 
p = 6.8e-29 

4.75 38.35 0.89 r = 0.95, 
p = 0.0e+00 

r = -0.23, 
p = 3.1e-09 

IXI 562 4.76 35.20 0.87 r = 0.93, 
p = 2.9e-252 

r = -0.48, 
p = 3.5e-33 

6.08 57.35 0.79 r = 0.94, 
p = 1.2e-267 

r = -0.18,  
p = 2.2e-05 

eNKI 597 5.20 44.85 0.87 r = 0.93, 
p = 8.1e-267 

r = -0.47, 
p = 1.4e-33 

4.97 39.65 0.88 r = 0.94, 
p = 9.7e-288 

r = -0.49, 
p = 3.6e-38 

1000- 
BRAINS 

1143 4.04 26.65 0.83 r = 0.91, 
p = 0.0e+00 

r = -0.50, 
p = 2.0e-73 

5.13 41.03 0.73 r = 0.90, 
p = 0.0e+00 

r = -0.15, 
p = 2.0e-07 

 490 

The 32 workflows selected for cross-dataset analysis showed the average CV (5x5-fold on 491 

training data) MAE (4.28-7.39 years) lower than the test (hold-out dataset) MAE (5.23-8.98 492 

years) (Figure 2c). The test-set correlation between true and predicted age ranged from 0.82 to 493 

0.93, while the age bias ranged from -0.27 to -0.75 (Table S3). All workflows showed a high 494 

similarity in their predictions (correlations 0.83-0.99 averaged across the four runs). Due to 495 

this high similarity, the averaged predictions, i.e., ensemble, from 32 workflows were not better 496 

than the top-performing workflow (Figure S2). The workflows that performed well within-497 

dataset also performed well in cross-dataset predictions (Figure S6). These results indicate that 498 

the corresponding models could generalize well to data from a new unseen site. 499 

 500 
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 501 
Figure 2. Within-dataset and cross-dataset results. a. The line plot showing CV MAE (averaged across 502 

four datasets) for 128 workflows arranged in increasing order (names of all workflows are given in 503 

Table S2). The orange bars represent the MAEs of 32 selected workflows with their names in  the table 504 

on left. b. The scatter plot between the chronological age and within-dataset predicted age for the 505 

CamCAN data using S4_R4 + GPR workflow (MAE = 4.94 years and r = 0.94, p = 6.4e-309). c. The 506 

line plot showing test MAE (averaged across four runs) for the 32 workflows arranged in increasing 507 

order (names of all workflows are given in Table S3). The purple bars represent the MAEs of 10 selected 508 

workflows with their names in the table on the bottom right. e. The scatter plot between the 509 

chronological age and cross-dataset predicted age for the CamCAN data using S4_R4 + PCA + GPR 510 

workflow (MAE = 4.75 years and r = 0.95, p = 0.0e+00). 511 

 512 
We selected 10 workflows with the lowest test MAE for further analysis. These workflows 513 

consisted of only voxel-wise feature spaces (S4_R4, S4_R8, and S0_R4) with and without 514 

PCA. The ML algorithms included GPR, RVRlin, RR, and LR. The best-performing workflow 515 

was the S4_R4 + PCA + GPR with the lowest average test MAE, a high R2, a high correlation 516 

between true and predicted age (Figure 2d), and moderate age bias (Figure S3), see  517 

 518 

Table 2b for its performance on all four datasets), followed by the S4_R4 + GPR workflow.  519 
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3.3 Test-retest reliability and longitudinal consistency 520 

The test-retest reliability and longitudinal consistency of the top 10 workflows selected from 521 

the cross-dataset evaluation were evaluated using the CoRR and OASIS-3 datasets.  522 

 523 

For the short retest duration of less than three months, all 10 workflows showed high test-retest 524 

reliability (CoRR: CCC = 0.95-0.98, age range 20-84 years; OASIS-3: CCC = 0.77-0.86, 43-525 

81 years). For the longer retest duration of 1-2 years in the CoRR dataset, CCC ranged between 526 

0.94-0.97 (age range 18-88 years) ( 527 

 528 

Table 3). These results show that the age was reliably estimated by the selected workflows.  529 

 530 

Next, we evaluated the longitudinal consistency as the correlation between the difference in 531 

the predicted age and the difference in the chronological age (Figure 3, Table S4). Six 532 

workflows out of 10 showed a significant positive linear relationship at the retest duration of 533 

2-3.25 years (r between 0.451-0.437, p < 0.05) in the CoRR dataset. These workflows included 534 

the S4_R4 feature space with and without PCA with the GPR, RVRlin, and RR algorithms. In 535 

contrast, none of the workflows showed a linear relationship in the OASIS-3 dataset (retest 536 

duration 3-4 years). 537 

 538 

Although the workflows showed similar test-retest reliability and longitudinal consistency, the 539 

workflow S4_R4 + PCA + GPR showed the lowest MAE on these sub-samples ( 540 

 541 

Table 3, Table S4). Therefore, considering all the analysis scenarios, within-dataset, cross-542 

dataset, test-retest reliability, and longitudinal consistency, although other workflows were also 543 

competitive, we deemed the S4_R4 + PCA + GPR workflow as well-performing and chose it 544 

for further analysis. 545 

3.4 Bias correction and correlation with behavioral/cognitive measures 546 

In the CamCAN data, FI was negatively correlated with age (r = -0.661, p = 1.92e-80), while 547 

motor learning reaction time was positively correlated with age (r = 0.544, p = 1.11e-24). In 548 

the eNKI data, CWIT inhibition trial completion time (r = 0.361, p = 6.50e-12) and TMT 549 

number-letter switching trial completion time (r = 0.279, p = 1.45e-07) were positively 550 
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correlated with age. On the other hand, WASI matrix reasoning scores were negatively 551 

correlated (r = -0.240, p = 6.03e-06), and WASI similarities scores were not correlated (r = 552 

0.052, p = 0.332) with age (Table 4). 553 

 554 

As several ways have been proposed to obtain the correlation between delta and behavior, e.g., 555 

using bias-corrected delta or using age as a covariate, we evaluated several alternatives (see 556 

section 2.6).  557 

 558 

Table 3. Concordance correlation coefficient (CCC) between brain-age delta from two sessions at 559 

different test-retest durations and their respective mean absolute error (MAE) between true and 560 

predicted age for CoRR and OASIS-3 datasets for the top 10 workflows. 561 

 CoRR dataset OASIS-3 dataset 

Retest duration < 3 months 

(N = 86) 

1 – 2 years 

(N = 95) 

< 3 months 

(N = 36) 

Age range (years) 20.0 - 84.0 18.0 - 88.0 42.66 - 80.90 

Workflows MAE 

(ses-1) 

MAE 

(ses-2) 

CCC MAE 

(ses-1) 

MAE 

(ses-2) 

CCC MAE 

(ses-1) 

MAE 

(ses-2) 

CCC 

S4_R4 + PCA + GPR 4.808 5.008 0.97 4.374 4.204 0.95 4.2 3.801 0.80 

S4_R4 + GPR 4.928 5.112 0.97 4.738 4.49 0.96 4.24 3.935 0.82 

S4_R4 + PCA + RVRlin 5.811 5.757 0.97 5.156 5.072 0.96 5.288 5.223 0.83 

S4_R4 + RVRlin 5.815 5.76 0.97 5.141 5.065 0.96 5.234 5.177 0.83 

S4_R8 + RVRlin 6.375 6.265 0.95 5.444 5.33 0.96 5.109 5.2 0.77 

S4_R4 + RR 5.64 5.653 0.98 5.174 5.277 0.97 4.918 4.71 0.85 

S4_R4 + PCA + RR 5.742 5.732 0.98 5.288 5.404 0.97 4.988 4.744 0.85 

S0_R4 + LR 6.281 6.359 0.96 6.251 6.293 0.94 4.949 5.161 0.86 

S4_R8 + LR 6.763 6.676 0.97 6.497 6.434 0.97 5.811 5.896 0.79 

S4_R8 + RR 6.232 6.185 0.97 5.975 6.016 0.97 5.332 5.328 0.81 

  562 
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 563 
Figure 3. Longitudinal consistency. (top) The brain-age delta from two scans of the same subjects and 564 

(bottom) the scatter plot between the difference in chronological age and the difference in predicted age 565 

between two scans acquired within a retest duration of a. 2-3.25 years (CoRR dataset) b. 3-4 years 566 

(OASIS-3 dataset). 567 

3.4.1. Within-dataset predictions 568 

Within-dataset hold-out predictions, i.e., single prediction per subject, were derived using the 569 

chosen workflow (S4_R4 + PCA + GPR). The bias correction model was estimated using the 570 

CV predictions on the same dataset. In both datasets, there was no residual age bias after bias 571 

correction: CamCAN, r = -0.17, p = 1.13e-05 and r = 0.00, p = 0.999; and eNKI, r = -0.20 p = 572 

4.53e-07 and r = 0.001, p = 0.986, before and after correction, respectively (Figure S3). 573 

 574 

We first calculated the correlation between the uncorrected delta and behavioral measures 575 

using age as a covariate (Table 4a,b). In the CamCAN data, a higher delta was associated with 576 

lower FI (r = -0.154, p = 0.0001) and higher motor learning reaction time (r = 0.181, p = 0.002). 577 

In the eNKI data, a higher delta was associated with lower response inhibition and selective 578 

attention, as indicated by a higher CWIT inhibition trial completion time (r = 0.109, p = 0.045). 579 
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There were no correlations between delta and intelligence scores (WASI matrix reasoning and 580 

similarities). The results with age, age2, and gender as covariates showed a similar trend (Table 581 

S5a).  582 

 583 

Next, we repeated this analysis with the corrected delta (Table 4a,c) and expected results 584 

similar to using uncorrected delta with age as a covariate. We indeed found similar correlations 585 

with FI (r = -0.157 p = 7.24e-05) and motor learning reaction time (r = 0.186 p = 0.001) in the 586 

CamCAN data, but no significant correlation with CWIT inhibition trial completion time (r = 587 

0.094, p = 0.084) in the eNKI data. The correlations using corrected delta with covariate were 588 

highly similar to uncorrected delta with covariate (Table 4a, b & d). 589 

3.4.2 Cross-dataset predictions 590 

Cross-dataset predictions were derived for the CamCAN and eNKI datasets using the S4_R4 591 

+ PCA + GPR workflow trained on the IXI + eNKI + 1000BRAINS (N = 2302) and IXI + 592 

CamCAN + 1000BRAINS (N = 2356) datasets, respectively.  593 

 594 

In the CamCAN data, the bias correction model was successful with age bias before and after 595 

correction r = -0.23, p = 3.06e-09 and r = -0.04, p = 0.263, respectively. However, the correction 596 

was not successful in the eNKI data; the age bias was r = -0.49, p = 3.62e-38 and = -0.35, p = 597 

8.39e-19 before and after correction, respectively (Figure S3). This result indicates that the bias 598 

correction might not always work well when applied to cross-dataset. 599 

 600 

Using age as a covariate on the uncorrected delta, we did not find a significant delta-behavior 601 

correlation in the CamCAN data. In the eNKI data, a higher delta was associated with lower 602 

response inhibition and selective attention, as indicated by a higher CWIT inhibition trial 603 

completion time (r = 0.208, p = 0.0001) and lower cognitive flexibility indicated by a higher 604 

TMT completion time (r = 0.147, p = 0.006) (Table 4b,b). There were no correlations between 605 

delta and intelligence scores (WASI matrix reasoning and similarities). The results with age, 606 

age2, and gender as covariates showed a similar trend (Table S5b).  607 
 608 

 609 

 610 

 611 
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Table 4. Correlation of brain-age delta with various behavioral measures with and without bias 612 

correction. a. From within-dataset predictions. b. From cross-dataset predictions. Age was used as a 613 

covariate. Abbreviations: CWIT: Color-Word Interference Test, TMT: Trail Making Test, WASI-II: 614 

Wechsler Abbreviated Scale of Intelligence 615 

a. From within-dataset predictions 616 
 617 

Dataset Behavioral measure N Correlation 
with age 

No bias correction After bias correction 

    (a) No 
covariate 

(b) With 
covariate 

(c) No 
covariate 

(d) With 
covariate 

CamCAN Fluid Intelligence 
(Cattel test) 

631 r = -0.661,  
p = 1.9e-80 

r = -0.043,  
p = 0.282 

r = -0.154,  
p = 0.0001 

r = -0.157,  
p = 7.2e-05  

r = -0.154, 
p = 0.0001 

Motor Learning 
(Reaction time) 

302 r = 0.544,  
p = 1.1e-24 

r = 0.089,  
p = 0.122  

r = 0.181,  
p = 0.002 

r = 0.186,  
p = 0.001 

r = 0.180,  
p = 0.002 

eNKI CWIT (Inhibition trial 
completion time) 

340 r = 0.361,  
p = 6.5e-12 

r = 0.022, 
p = 0.683 

r = 0.109,  
p = 0.045 

r = 0.094,  
p = 0.084 

r = 0.110,  
p = 0.043 

TMT (Number-letter 
switching trial 
completion time)  

344 r = 0.279,  
p = 1.5e-07 

r = -0.031,  
p = 0.564 

r = 0.033,  
p = 0.542 

r = 0.022,  
p = 0.690 

r = 0.033,  
p = 0.545 

WASI-II matrix 
reasoning 

347 r = -0.240,  
p = 6.0e-06 

r = 0.026,  
p = 0.627 

r = -0.030,  
p = 0.581 

r = -0.019,  
p = 0.728 

r = -0.029,  
p = 0.590 

WASI-II similarities 347 r = 0.052,  
p = 0.332 

r = -0.033,  
p = 0.536 

r = -0.022,  
p = 0.685 

r = -0.023,  
p = 0.667 

r = -0.021,  
p = 0.698 

 618 
b. From cross-dataset predictions 619 

 620 
Dataset Behavioral measure N Correlation 

with age 
No bias correction After bias correction 

    (a) No 
covariate  

(b) With 
covariate 

(c) No 
covariate 

(d) With 
covariate 

CamCAN Fluid Intelligence 
(Cattel test) 

631 r = -0.661,  
p = 1.9e-80 

r = 0.071,  
p = 0.074 

r = -0.073,  
p = 0.066 

r = -0.053, 
p = 0.180 

r = -0.073,  
p = 0.066 

Motor Learning  
(Reaction time) 

302 r = 0.544,  
p = 1.1e-24 

r = -0.023,  
p = 0.689 

r = 0.092,  
p = 0.110 

r = 0.083,  
p = 0.151 

r = 0.092,  
p = 0.110 

eNKI CWIT (Inhibition trial 
completion time) 

340 r = 0.361,  
p = 6.5e-12 

r = 0.005,  
p = 0.931 

r = 0.208,  
p = 0.0001 

r = 0.065,  
p = 0.230 

r = 0.208, 
p = 0.0001 

TMT (Number-letter 
switching trial 
completion time)  

344 r = 0.279,  
p = 1.5e-07 

r = -0.007,  
p = 0.898 

r = 0.147,  
p = 0.006 

r = 0.039,  
p = 0.469 

r = 0.147,  
p = 0.006 

WASI-II matrix 
reasoning 

347 r = -0.240,  
p = 6.0e-06 

r = 0.077,  
p = 0.150 

r = -0.045,  
p = 0.400 

r = 0.043,  
p = 0.425 

r = -0.045,  
p = 0.400 

WASI-II similarities 347 r = 0.052,  
p = 0.332 

r = -0.098,  
p = 0.068 

r = -0.083,  
p = 0.122 

r = -0.096,  
p = 0.073 

r = -0.083,  
p = 0.122 

 621 
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Since there was a residual correlation between corrected delta and age, the correlations with 622 

behavior without age as a covariate can be unreliable. We, therefore, do not discuss correlations 623 

of the corrected delta without age as a covariate, but they are reported in Table 4b,c for 624 

completeness. Additionally, as expected, the correlations using corrected delta with age as a 625 

covariate were similar to uncorrected delta with covariate (Table 4b, b & d). 626 

3.5 Predictions in the ADNI sample 627 

At timepoint 1, the mean uncorrected delta was -5.97 years in HC, -4.39 in EMCI, -3.57 in 628 

LMCI, and -2.13 in AD (Figure 4a). In other words, the model underestimated age. The slope 629 

and intercept derived from the bias correction model using the training data (CV predictions) 630 

could not entirely correct for the under-estimation and age bias (Figure 4b). Bias correction 631 

using the whole ADNI HC sample removed the bias (average delta, HC:0, EMCI: 0.85, LMCI: 632 

2.09, AD: 4.47 years) (Figure 4c). ANOVA revealed that the corrected delta differed 633 

significantly across the groups (F = 12.94, p = 3.10e-08), and post-hoc t-tests revealed 634 

significant differences between AD and HC (p = 1.16e-08), EMCI (p = 1.87e-05), LMCI (p = 635 

0.043), and HC and LMCI (p = 0.022) after Bonferroni correction. At timepoint 2, the pattern 636 

was similar to timepoint 1 but with higher corrected delta values (EMCI: 1.15 years, LMCI: 637 

2.88, AD: 6.59 years) (Figure 4e-f, Table 5). These results demonstrate that our model could 638 

capture the range of normal structural variation related to age in healthy subjects and deviance 639 

in both MCI and AD patients. 640 

 641 

The correlations between HC sample-corrected delta and various clinical test scores were 642 
calculated with age as a covariate ( 643 

Table 6). At timepoint 1, the delta was negatively correlated with MMSE (r = -0.255, p = 0.016) 644 

and positively correlated with FAQ (r = 0.275, p = 0.005) in the entire sample. No correlations 645 

were found in individual diagnostic groups or could not be calculated due to insufficient score 646 

data. At timepoint 2, the delta was negatively correlated with MMSE (r = -0.303, p = 2.40e-647 

12) and positively correlated with CDR (r = 0.270, p = 7.35e-10) and FAQ (r = 0.331, p = 648 

2.31e-14) in the whole sample. In the AD group, the delta was positively correlated with FAQ 649 

(r = 0.298, p = 0.021) but not with MMSE or CDR. In the LMCI group, the delta was positively 650 

correlated with FAQ (r = 0.309, p = 0.002), negatively correlated with MMSE (r = -0.227, p = 651 

0.022), and not correlated with CDR. In the EMCI group, the delta positively correlated with 652 
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CDR (r = 0.153, p = 0.034) but not MMSE and FAQ scores. No correlations were found in the 653 

HC group. The correlations with age, age2, and gender as covariates were similar (Table S6).  654 

 655 

Figure 4. Brain-age delta in the clinical population. The box plot compares the delta between healthy 656 

control (HC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and 657 

Alzheimer’s disease (AD) from the ADNI sample at (left) timepoint-1 and (right) timepoint-2. Box plot 658 

with a & d. uncorrected delta. b & e. corrected delta using the CV predictions from the training set. c 659 

& f. corrected delta using the predictions from HC-ADNI subjects.  660 
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Table 5. Prediction performance on the ADNI data from two timepoints using the best-performing 661 

(S4_R4 + PCA + GPR) workflow. Abbreviations: HC: healthy control, EMCI and LMCI: early and late 662 

mild cognitive impairment, AD: Alzheimer’s disease 663 

Time-
point 

ADNI 
sample 

N MAE MSE Corr 
(true, pred) 

Mean 
delta 

 

Corrected mean 
delta (train 

samples) 

Corrected mean 
delta (ADNI-HC 

samples) 
1 HC 209 6.56 61.19 r = 0.76, p = 4.67e-40 -5.97 -5.18 0.00 

EMCI 237 5.76 52.30 r = 0.72, p = 1.07e-38 -4.39 -3.78 0.85 

LMCI 127 5.56 46.52 r = 0.75, p = 4.30e-24 -3.57 -2.86 2.09 

AD 125 5.18 44.29 r = 0.66, p = 5.00e-17 -2.13 -1.20 4.47 

2 HC 153 6.56 62.73 r = 0.73, p = 5.46e-27 -6.05 -5.27 0.00 

EMCI 197 5.57 50.82 r = 0.73, p = 1.23e-34 -4.32 -3.66 1.15 

LMCI 104 5.68 47.75 r = 0.72, p = 6.54e-18 -3.25 -2.44 2.88 

AD 61 5.31 44.12 r = 0.59, p = 6.09e-07 -0.76 0.31 6.59 

 664 

Table 6. Pearson’s correlation coefficients between corrected brain-age delta using S4_R4 + PCA + 665 

GPR workflow and cognitive measures (MMSE, CDR, and FAQ) using age as a covariate from the 666 

ADNI sample. The correlations were computed for the whole sample and each diagnostic group (HC, 667 

EMCI, LMCI and AD) separately from two timepoints. Abbreviations: MMSE: Mini-Mental State 668 

Examination, CDR: Global Clinical Dementia Rating Scale, FAQ: Functional Assessment 669 

Questionnaire; HC: healthy control, EMCI and LMCI: early and late mild cognitive impairment, AD: 670 

Alzheimer’s disease 671 

 Timepoint-1 Timepoint-2 

 MMSE CDR FAQ MMSE CDR FAQ 

HC N = 68 N = 67 N = 74 N = 153 N = 147 N = 149 
r = -0.202 , 
p = 0.101 

r = 0.025, 
p = 0.841 

r = 0.153, 
p = 0.196 

r = -0.065,  
p = 0.427 

r = -0.019, 
p = 0.819 

r = 0.070,  
p = 0.399 
 

EMCI N = 3 N = 3 N = 3 N = 196 N = 194 N = 193 
n.a. n.a. n.a. r = -0.079,  

p = 0.272 
r = 0.153,  
p = 0.034 

r = 0.091,  
p = 0.211 
 

LMCI N = 2 N = 2 N = 2 N = 103 N = 102 N = 103 
n.a. n.a. n.a. r = -0.227,  

p = 0.022 
r = 0.115,  
p = 0.253 

r = 0.309,  
p = 0.002 
 

AD  N = 17 N = 17 N = 26 N = 61 N = 61 N = 61 
r = -0.435 , 
p = 0.092 

r = 0.221,  
p = 0.412 

r = 0.244,  
p = 0.240 

r = -0.186 ,  
p = 0.155 

r = 0.218,  
p = 0.094 

r = 0.298, 
p = 0.021 
 

Whole  
sample 

N = 90 N = 89 N = 105 N = 513 N = 504 N = 506 
r = -0.255, 
p = 0.016 

r = 0.114,  
p = 0.290 

r = 0.275, 
p = 0.005 

r = -0.303, 
p = 2.40e-12 

r = 0.270, 
p = 7.35e-10 

r = 0.331, 
p = 2.31e-14 
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We also found that the size of HC sample used for bias correction considerably impacts the 672 

mean corrected delta in AD subjects (Figure S7). Specifically, with fewer HC subjects, the 673 

variance of the corrected delta in AD was much higher in both sessions, e.g., at the timepoint 674 

1 when using 21 HC samples, the mean AD delta ranged between ~1-12 years and converged 675 

to 4.47 years as the sub-samples approached the complete sample.  676 

 677 

 678 
Figure 5. Correlation between MAE and delta-behavioral correlations obtained using 32 workflows a. 679 

CamCAN (N = 302) b. eNKI (N = 340) c. ADNI (N = 61). For CamCAN and eNKI data, the within-680 

dataset delta-behavior correlations with age as a covariate were used. For ADNI data, we used the delta-681 

behavior correlations using corrected delta (corrected using the HC sample) with age as a covariate. 682 
 683 
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3.6 Relationship of MAE with delta and delta-behavior correlations 684 

Using 32 workflows selected from the cross-dataset evaluation, we analyzed whether model 685 

performance (MAE) was associated with their brain-behavior correlations. The corrected mean 686 

delta in AD ranged from 5.43 to 10.01 years, with some relatively poor performing models 687 

yielding a higher delta in AD (Table S7). Lower accuracy (higher MAE) was associated with 688 

stronger delta-MMSE correlation (Figure 5c). In contrast, lower MAE was associated with a 689 

stronger brain-behavior correlations in the two healthy samples, delta-motor learning reaction 690 

time in CamCAN, and delta-CWIT inhibition trial completion time in eNKI datasets (Figure 691 

5a & b). 692 

3.7 Comparison with brainageR and effect of preprocessing and tissue 693 

types 694 

Next, we compared the S4_R4 + PCA + GPR workflow and the brainageR model both trained 695 

on the same data using the CoRR, OASIS-3, and MyConnectome datasets (Figure 6). 696 

 697 

In CoRR dataset, S4_R4 + PCA + GPR (mean MAE = 4.69, r = 0.947, bias r = -0.377) 698 

performed better than brainageR (mean MAE = 4.91, r = 0.946, bias r = -0.128) in MAE (paired 699 

t-test: t = -8.04, p =1.97e-12) but brainageR showed a lower mean age bias (Steiger’s Z test 700 

(Steiger 1980) z = -3.31, p = 0; Figure 6a & Figure S8). There was no significant difference 701 

between the mean true and predicted age correlations from two models (z = 0.133, p = 0.447).  702 

 703 

S4_R4 + PCA + GPR (MAE = 4.74, r = 0.836, bias r = -0.092) also showed lower MAE than  704 

brainageR (MAE = 5.07, r = 0.805, bias r = -0.058) on the OASIS-3 dataset (Figure 6b). The 705 

predicted ages (paired t-test: t = -1.37, p = 0.17) and the bias (z = -1.031, p = 0.151) of the two 706 

models were similar but the r value for our model was significantly higher (z = 3.101, p = 707 

0.001). Test-retest reliability on a sub-sample of the OASIS-3 dataset (retest duration < 3 708 

months) was higher for brainageR (CCC = 0.94 vs. 0.82 for S4_R4 + PCA + GPR). Both 709 

models did not show longitudinal consistency at a retest duration of 3-4 years.  710 

 711 

Additionally, S4_R4 + PCA + GPR workflow (MAE = 4.13) performed significantly better 712 

than brainageR (MAE = 7.18) on the MyConnectome dataset (paired t-test: t = 9.60, p = 1.66e-713 
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08; Figure 6c). Note that one outlier scan (true age = 48) was excluded from this analysis (final 714 

N = 19). 715 

 716 

 717 

Figure 6. Comparison of our best workflow (S4_R4 + PCA + GPR) with the brainageR model on a. 718 

CoRR dataset (left) the box plot comparing predicted age from two models with true age using a sub-719 

sample of 107 subjects (center) the scatter plot between the chronological (true) age and predicted age 720 

(right) the scatter plot between the chronological (true) age and brain-age delta. b. OASIS-3 dataset (for 721 

visual clarity, the box plot is created using a random sub-sample; N = 120) c. MyConnectome dataset 722 

(the red cross indicates the outlier scan that was removed from the analysis; final N = 19). d. 723 

Performance metrics for all datasets. For the CoRR dataset, the table shows average values from 100 724 

iterations of sub-sampled data, but the plots are from one iteration. 725 

 726 
To gain insight into the impact of preprocessing, we compared within-dataset performance of 727 

our workflow using SPM preprocessing on IXI and CamCAN datasets. On both datasets, CAT-728 

derived GM features performed better (IXI: MAE = 4.85 years; CamCAN: MAE = 5.01) than 729 
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SPM-derived GM features (IXI: MAE = 6.25; CamCAN: MAE = 5.82) (Table 7). SPM-derived 730 

features from three tissue types performed better (IXI: MAE = 5.08; CamCAN: MAE = 4.88) 731 

than using only SPM-derived GM features, indicating that different tissue types carry 732 

complementary information (Table 7). 733 
 734 
Table 7. Comparison of within-dataset performance between models trained with CAT-preprocessed 735 

GM features (𝑆4_𝑅4	 + 	𝑃𝐶𝐴	 + 	𝐺𝑃𝑅; our framework), SPM-preprocessed GM features (𝑆4_𝑅4+,- +736 

𝑃𝐶𝐴 + 𝐺𝑃𝑅) and SPM-preprocessed GM+WM+CSF features (𝑆4_𝑅4+,-.-/0+1	 + 𝑃𝐶𝐴 + 𝐺𝑃𝑅) on IXI 737 

and CamCAN data. Abbreviations: MAE: mean absolute error, MSE: mean squared error, Corr (true, 738 

pred): Pearson’s correlation between true age and predicted age, Age bias: Pearson’s correlation 739 

between true age and brain-age delta 740 

 Workflow MAE MSE Corr (true, pred) Age bias 

 

 

IXI 

(N = 562) 

𝑆4_𝑅4	 + 	𝑃𝐶𝐴	 + 	𝐺𝑃𝑅 4.85 36.89 r = 0.93, p = 1.03e-247 r = -0.21, p = 7.39e-07 

𝑆4_𝑅4+,- + 𝑃𝐶𝐴+ 𝐺𝑃𝑅 6.25 62.34 r = 0.88, p = 1.15e-181 r = -0.40, p = 1.61e-22 

𝑆4_𝑅4+,-.-/0+1	 + 𝑃𝐶𝐴 + 𝐺𝑃𝑅 5.08 40.80 r = 0.92, p = 3.98e-234 r = -0.27, p = 1.64e-10 

 

 

CamCAN 

(N = 650) 

𝑆4_𝑅4	 + 	𝑃𝐶𝐴	 + 	𝐺𝑃𝑅 5.01 40.89 r = 0.94, p = 6.45e-307 r = -0.17, p = 1.14e-05 

𝑆4_𝑅4+,- + 𝑃𝐶𝐴+ 𝐺𝑃𝑅 5.82 56.83 r = 0.92, p = 3.87e-258 r = -0.30, p = 2.66e-15 

𝑆4_𝑅4+,-.-/0+1	 + 𝑃𝐶𝐴 + 𝐺𝑃𝑅 4.88 39.77 r = 0.94, p = 8.29e-308 r = -0.25, p = 1.53e-10 

 741 

4. Discussion 742 

4.1 Effect of feature space and ML algorithm 743 

The wide range of options available for designing brain-age estimation workflows makes it 744 

challenging to disentangle the effect of feature space and ML algorithms. To this end, we 745 

investigated 128 workflows constituting combinations of 16 feature representations (voxel-746 

wise and parcel-wise) extracted from GMV images and eight ML algorithms.  747 

 748 

Previous studies have shown that the age prediction MAE ranges between ~5-8 years for broad 749 

age range data (18-90 years) when using GMV features (Table S1). Our workflows showed 750 

performance in a similar range, with some of the workflows generalizing well to data from a 751 

new site. Specifically, the MAE ranged between 4.90-8.48 years in CV and 4.73-8.38 years in 752 

test data for within-dataset analysis and for cross-dataset analysis between 4.28-7.39 years and 753 
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5.23-8.98 years in CV and test data, respectively. The test MAE and R2 were highly correlated 754 

for both within-dataset and cross-dataset analysis (Table S2 & S3, Figure S5). The workflows 755 

showed high positive correlations between chronological age and predicted age for within-756 

dataset (r between 0.81-0.93) and cross-dataset (r between 0.82-0.93) analyses. The workflows 757 

that performed well in within-dataset analysis also performed well in cross-dataset analysis. 758 

The lower cross-dataset CV MAE (4.28-7.39 years) compared to within-dataset CV MAE 759 

(4.90-8.48 years) might be because of the larger sample sizes in the cross-dataset analysis or 760 

possible overfitting in smaller samples. This corroborates previous studies showing lower 761 

errors with larger training sets (Baecker et al. 2021; de Lange et al. 2022), contrary to others 762 

that have shown a negative correlation between sample size and CV performance estimates 763 

(Wolfers et al. 2015; Varoquaux 2018). The age range of the training and test data affects the 764 

performance estimates. Specifically, when using a narrow age range, performance metrics such 765 

as MAE and RMSE are usually better than broad age range evaluations (Cole 2020; Peng et al. 766 

2021; de Lange et al. 2022). However, the lower errors and hence smaller brain-age delta values 767 

in those cases are not necessarily due to better model performance but rather because the 768 

predictions are closer to the mean age of the group. Here, our focus was on broad age range 769 

models, and the errors we obtained are within the range of what has been previously shown. 770 

 771 

Our results showed that the choice of feature space and the ML algorithm both affect the 772 

prediction error. In general, feature spaces derived from voxel-wise GMV such as S4_R4, 773 

S4_R8, and S0_R4 in combination with GPR, KRR, RVRpoly, and RVRlin algorithms 774 

performed well in the within-dataset analysis. The results were similar with PCA retaining 775 

100% variance for some workflows but not all, especially the regularized models (LR and 776 

ENR) showed lower performance after PCA (see Supplementary Table S2). This might be 777 

because of the different biases of ML algorithms, e.g., due to regularization. It is possible that 778 

the sparsity-inducing penalization in addition to PCA leads to  lower accuracy models. Some 779 

of these selected workflows also performed well on cross-dataset analysis. Specifically, the 780 

voxel-wise GMV features smoothed with a 4 mm FWHM kernel and resampled to a spatial 781 

resolution of 4 mm, without and with PCA (S4_R4 and S4_R4 + PCA) together with the GPR 782 

algorithm performed best in both the within-dataset and cross-dataset analyses. A previous 783 

study has reported a voxel size of 3.73 mm3 and a smoothing kernel of 3.68 mm as the optimal 784 

parameters for processing GM images for brain-age prediction with a performance similar to 785 

our workflows (Lancaster et al. 2018). In general, parcel-wise features performed worse than 786 

voxel-wise features irrespective of the ML algorithm used, suggesting that the GMV 787 
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summarized from parcels leads to a loss of age-related information. Our results align with a 788 

recent study comparing several ML models (GPR-dot product kernel, RVR-linear kernel, and 789 

SVR-linear kernel) trained on region-based and voxel-based features with or without PCA on 790 

a narrower age range (47–73 years) (Baecker et al. 2021). They found minimal differences in 791 

performance due to the ML algorithms with voxel-based features performing better than 792 

region-based features.  793 

 794 

Our results also indicate that the non-linear algorithm (GPR with RBF kernel) and the kernel-795 

based algorithms (KRR and RVR) outperformed linear algorithms such as RR and LR. 796 

Surprisingly, the non-linear RFR algorithm performed the worst irrespective of the feature 797 

space used (Figure S4). This suggests that capturing distributional information using the RBF 798 

kernel, as we did using GPR, and use of kernels that capture the similarity between the GMV 799 

features in an invariant manner (e.g., Pearson correlation) is beneficial. These results 800 

corroborate a recent study that comprehensively evaluated 22 regression algorithms (test MAE 801 

between 4.63-7.14 years) in broad age range data (18-94 years) using GMV features and found 802 

SVR, KRR, and GPR with a diverse set of kernels to perform well (Beheshti et al. 2022).  803 

 804 

In sum, the smoothed and resampled voxel-wise data (such as S4_R4, S4_R8) with either a 805 

non-linear or a kernel-based algorithm (GPR with RBF kernel, KRR with polynomial kernel 806 

degree (1 or 2), and RVR with linear and polynomial degree 1 kernels) are well suited for brain-807 

age estimation. Sometimes, especially with a large number of features, PCA might help 808 

improve performance (Franke et al. 2010; Baecker et al. 2021). However, we found the 809 

performance of these workflows with and without PCA to be similar. Therefore, one could use 810 

the features directly for immediate interpretability of the models; on the other hand, if 811 

computation is a constraint, then the PCA retaining 100% variance could be used without 812 

affecting the performance. 813 

 814 

Future studies can investigate options to improve model generalizability, such as data 815 

harmonization to remove site effects and considerations for population structure (e.g., over-816 

representative of the Caucasian population in the datasets used). 817 
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4.2 Test-retest reliability and longitudinal consistency 818 

The brain-age estimates must be reliable within a subject. We found the delta to be reliable 819 

over a short scan delay (CoRR: CCC = 0.95-0.98, age range = 20-84; OASIS-3: CCC = 0.76-820 

0.85, age range = 43-80). The reliability of delta within a short scan duration has been reported 821 

in previous studies. For example, one study showed an intraclass correlation coefficient (ICC) 822 

of 0.96 between deltas from subjects scanned an average of 28.35 ± 1.09 days apart (N = 20, 823 

mean age at first scan = 34.05 ± 8.71) (Cole, Poudel, et al. 2017). Another study showed an 824 

ICC of 0.93 in young adults from the OASIS-3 dataset (N = 20, age range = 19-34) scanned 825 

within a short delay of less than 90 days (Franke and Gaser 2012). Another study found an ICC 826 

of 0.81 with a mean interval of 79 days between scans (N = 20, chronological age = 45 years) 827 

(Elliott et al. 2021).  828 

 829 

Longitudinal consistency, i.e., chronologically proportionate increase in predicted age, is 830 

crucial for real-world application. Previous studies have shown lifestyle interventions, such as 831 

meditation and exercise (Luders et al. 2016; Steffener et al. 2016), can have positive effects on 832 

brain-age, while factors such as smoking and alcohol intake can have adverse effects (Bittner 833 

et al. 2021). For instance, 18 months of lifestyle intervention, including diet change and 834 

physical activity, showed attenuated brain-age in a longitudinal sample which correlated with 835 

improvement in several physiological measures (Levakov et al. 2022).Thus, lifestyle can lead 836 

to different longitudinal brain-age trajectories. However, in our analyses, we assumed that there 837 

were no such interventions over the retest duration as the datasets did not provide such 838 

information. With this assumption, we expected brain-age to increase proportionally with 839 

chronological age. 840 

 841 

In support of this assumption, we found a positive linear relationship between the difference in 842 

predicted age and the difference in chronological age at a retest duration of 2-3.25 years (N = 843 

26; r = 0.447, p = 0.022) in the CoRR dataset. However, there was no correlation in the OASIS-844 

3 dataset with a retest duration of 3-4 years (N = 127; r = -0.008, p = 0.932). Thus, the evidence 845 

of longitudinal consistency was weak. This can be speculatively explained by the maximum 846 

test-retest duration of 3-4 years which lies within the range of the MAE for the OASIS-3 dataset 847 

(MAE session-1: 5.08 and session-2: 5.86 years). Taken together, the high reliability supports 848 

the use of brain-age in clinical settings; however, further evaluations are needed to establish 849 

longitudinal consistency. 850 
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4.3 Effect of bias correction 851 

Most brain-age estimation workflows produce biased results, i.e., overestimation at younger 852 

ages and underestimation at older ages (Liang et al. 2019). Therefore, correcting this age bias 853 

is important to facilitate individual-level decisions. Here, we adopted a bias correction model 854 

that does not use the chronological age of test samples for correction (Cole 2020), as using 855 

chronological age can hamper fair comparison between workflows (de Lange et al. 2022). 856 

 857 

The tested workflows generally showed negative associations between chronological age and 858 

delta for both within-dataset (r between -0.22 to -0.83) and cross-dataset (r between -0.27 to -859 

0.75) predictions. However, this age bias was less pronounced in more accurate models (Figure 860 

S5). This result is in line with the previous work (de Lange et al. 2022) that showed that if input 861 

features are not informative enough to predict age, predictions will be closer to the median or 862 

mean age, leading to this bias. Additionally, we found that the data used to estimate the bias 863 

correction models can significantly impact the corrected delta. Specifically, within-dataset-864 

derived models corrected the age bias more adequately than cross-dataset models (Figure S3). 865 

This discrepancy might be due to the difference in data properties, e.g., scanner-specific 866 

idiosyncrasy, between the training and the out-of-site test data. Our results suggest that a bias 867 

correction model might not always work well when applied to a new site, even when the 868 

training data itself consists of multiple sites. Consequently, using part of the test data to correct 869 

the age bias in the remaining test data works well (as seen in the ADNI data analysis, section 870 

3.5). However, this might not be feasible when the test sample is small or in the extreme case, 871 

a single test subject is available.  872 

 873 

How much data is needed for learning a bias correction model is an important but unexplored 874 

question. We investigated this by learning bias correction models from sub-samples of the HC 875 

subjects from ADNI data. Smaller samples led to higher variance in the efficacy of bias 876 

correction models when applied to AD patients (Varoquaux 2018). For instance, at the smallest 877 

sample size (N = 21), the average corrected delta of the AD patients varied from 1 to 12 years 878 

(Figure S7, ADNI timepoint 1). It is likely that different studies use different samples for bias 879 

correction, so the results should be interpreted and compared with caution. This result shows 880 

the importance of using large samples for bias correction and emphasizes careful analysis and 881 

reporting of the results.  882 
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4.4 Correlation with behavior 883 

Using the selected workflow we observed that the correlation of delta with behavioral measures 884 

is sensitive to whether the delta was adjusted for age, either via bias correction or using it as a 885 

covariate. For instance, the uncorrected delta was not correlated with FI and motor learning 886 

reaction time (in CamCAN data) or CWIT inhibition trial completion time (in eNKI data); 887 

however, significant correlations were obtained using age-adjusted delta (Table 4). Thus, it is 888 

important to control for age when analyzing correlations between delta and behavioral 889 

measures. 890 

 891 

Using out-of-sample predictions from within-dataset analysis, we found that a higher 892 

uncorrected delta (with age as a covariate) was associated with lower FI, higher motor learning 893 

reaction time (from CamCAN data), and lower response inhibition and selective attention, 894 

indicated by higher CWIT inhibition trial completion time (from eNKI data). We expected 895 

these correlations to be similar to correlations calculated using corrected delta (de Lange and 896 

Cole, 2020), as there was no significant age bias. In the CamCAN data, the behavioral 897 

correlations using uncorrected delta with age as a covariate and corrected delta were quite 898 

similar (FI: r = -0.154, p = 0.0001 vs. r = -0.157, p = 7.24e-05; motor learning reaction time: r 899 

= 0.181, p = 0.002 vs. r = 0.186, p = 0.001). However, the correlation of CWIT inhibition trial 900 

completion time with uncorrected delta with age as a covariate was significant but not when 901 

using the corrected delta (r = 0.109, p = 0.045 vs. r = 0.094, p = 0.084). This slight difference 902 

could potentially be explained by the small effect size and differences inherent in the two 903 

methods used for correction. 904 

 905 

We also found that there was disagreement between delta-behavior correlations from within-906 

dataset and cross-dataset predictions with age as a covariate. For instance, CamCAN showed 907 

significant correlations with FI and motor learning reaction time with within-dataset delta but 908 

not with cross-dataset delta. On the other hand, eNKI showed significant correlations only with 909 

CWIT inhibition trial completion time using within-dataset delta, but a significant correlation 910 

with TMT completion time was found using cross-dataset delta. These results indicate that the 911 

subtle differences in predictions can impact behavioral correlations, even though the two 912 

predictions were highly correlated (CamCAN: r = 0.961, eNKI: r = 0.962; Figure S6). Thus, 913 

the delta-behavior correlations, whether using within-dataset or cross-dataset delta, should be 914 

interpreted with caution. 915 
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 916 

Taken together, within-dataset data yields better bias correction models, as we observed in two 917 

scenarios, behavioral correlations and delta estimation. However, when enough data are not 918 

available, the resulting models may fail to correct the age bias, leading to high variability in 919 

the mean delta (Figure S7). We therefore caution the practitioners and recommend carefully 920 

assessing bias correction models, e.g., using bootstrap analysis, before application. We 921 

observed that subtle differences in predicted age (within-dataset vs. cross-dataset) lead to 922 

different behavioral correlations, which can question the impact of the workflow used for 923 

prediction, the analysis method used for computing behavioral correlation (corrected delta 924 

versus covariates) and their interaction. Future studies should focus on disentangling such 925 

intricacies before applying the brain-age paradigm in practice. 926 

4.5 Higher brain-age delta in neurodegenerative disorders 927 

Neurodegenerative disorders such as AD, MCI, and Parkinson’s disease (PD) are accompanied 928 

by brain atrophy. Many studies have shown a decrease in global and local GMV in MCI and 929 

AD (Good et al. 2001; Karas et al. 2004; Fjell et al. 2014) and also in a broad range of 930 

neuropsychiatric disorders (Kaufmann et al. 2019). Consequently, an increased delta, i.e., older 931 

appearing brains, has been reported in patients with MCI (3-8 years) and AD (~10 years) 932 

(Franke and Gaser 2012; Gaser et al. 2013; Varikuti et al. 2018). We assessed the delta in HC, 933 

EMCI, LMCI, and AD patients by applying our best-performing workflow followed by a bias 934 

correction model estimated on HC. We found that brain aging is advanced by ~4.5-7 years in 935 

AD, ~2-3 years in LMCI, and ~1 year in EMCI (timepoint 1-timepoint 2). Furthermore, the 936 

delta was correlated with measures associated with disease severity and cognitive impairment 937 

in MCI and AD patients. Thus, in line with previous studies, brain-age delta confirmed its 938 

potential to indicate accelerated brain aging in neurodegenerative diseases based on structural 939 

MRI data (Franke and Gaser 2012; Varikuti et al. 2018; Cole et al. 2019; Cole et al. 2020; 940 

Eickhoff et al. 2021; Lee et al. 2021). 941 

 942 

We also show that different workflows can lead to different delta estimates in AD and, 943 

consequently, different correlations with cognitive measures (Table S7).  In addition, the mean 944 

corrected delta in the patient group depends on the type (within-dataset or cross-dataset) and 945 

size of sample used for bias correction (Figure S7). Thus, the results should be interpreted with 946 

caution when comparing different studies. 947 
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4.6 Relationship of MAE with delta and delta-behavior correlations 948 

The utility of age prediction models lies in their application to capture atypical aging. However, 949 

to achieve this, it is imperative to minimize the methodological variance, due to decisions in 950 

feature space and ML algorithms, by building accurate models so that the resulting brain-age 951 

delta captures biological variance. A recent study has shown that delta from overfitted models 952 

(i.e., with higher training accuracy) results in smaller differences in AD vs. CN, while delta 953 

from a model with comparatively lower (training) accuracy captures biological variance 954 

(Bashyam et al., 2020). However, our analyses and model selection was based on nested cross-955 

validation. Therefore, our accurate models cannot be considered overfitted. 956 

 957 

In healthy samples, higher accuracy (lower MAE) was associated with higher delta-motor 958 

learning reaction time (CamCAN) and delta-CWIT inhibition trial completion time (eNKI) 959 

associations. In contrast, in AD patients, models with lower accuracy (higher MAE) showed a 960 

stronger delta-MMSE correlation. This observation that some less accurate models can better 961 

capture the delta-behavioral correlation better in AD is in line with a previous study (Bashyam 962 

et al., 2020) (Figure 5 and Table S7). These contrasting observations in healthy and patient 963 

cohorts make it difficult to develop a model selection strategy based on delta-behavioral 964 

correlations.  965 

  966 

The corrected mean delta in AD (corrected using the CN sample, indicative of separation 967 

between CN and AD), for the 32 workflows ranged from 5.43 to 10.01 years. Some moderately 968 

accurate models, e.g., S0_R4 + LR (delta = 7.27, MAE = 5.91 years), showed a high delta for 969 

AD and a strong correlation with AD scales (Table S7). However, the model with the highest 970 

delta (173 + RFR: delta = 10.01, MAE:  9.07 years) showed a comparatively weaker correlation 971 

with behavior. Moreover, similarly performing models (S0_R4 + LR: delta = 7.27, MAE = 972 

5.91 years vs. S8_R4 + KRR: delta = 7.17, MAE = 6.59 years) showed quite different 973 

correlation with behavior. This indicates a nonlinear relationship between the models’ MAEs, 974 

deltas, and behavioral correlations.  975 

 976 

Based on these results, we speculate that perhaps using adequately regularized models in the 977 

patient population can be beneficial even if they show a lower accuracy. It might be possible 978 

that regularization pushes the models to focus on fewer specific features containing typical 979 
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aging-related signal. This in turn could lead to lower accuracy models (as it downweighs some 980 

features) but also leads to delta estimates that are more informative of atypical aging.  981 

 982 

Taken together, comparing models based on their performance on patient data and delta-983 

behavior correlations is a promising but open topic. In particular, it is unclear which delta-984 

behavioral correlation to use, and generalizability of models across behavioral scores, samples, 985 

and disorders remains unknown. Further studies are needed to define appropriate procedures 986 

for model selection based on such criteria. 987 

4.7 Comparison with brainageR and effect of preprocessing and tissue 988 

types 989 

Using the same training data as brainageR, our workflow outperformed brainageR in terms of 990 

MAE in three datasets; CoRR (N = 107; mean MAE = 4.69 vs. 4.91), OASIS-3 (N = 806; MAE 991 

= 4.74 vs. 5.07), and MyConnectome (MAE = 4.13 vs. 7.18). However, the bias of our model 992 

was similar or higher than that of brainageR and its test-retest reliability was lower (OASIS-3, 993 

N = 36; CCC = 0.82 vs. CCC = 0.94). Overall, our workflow showed lower MAE, higher 994 

correlation between true and predicted age but also higher age bias compared to brainageR. 995 

These differences are likely driven by differences in preprocessing, and the use of three tissue 996 

types by brainageR as opposed to us using only GM. To investigate this further, we performed 997 

two additional analyses.  998 

 999 

Different VBM tools can provide different GMV estimates, influencing the estimated 1000 

association with age (Tavares et al. 2019; Antonopoulos et al. 2023). The CAT-derived GMV 1001 

features performed better than SPM preprocessing (both with S4_R4 + PCA for feature 1002 

extraction together with the GPR algorithm for learning) in terms of MAE (e.g., IXI: MAE = 1003 

4.85 vs. 6.25), the correlation between true and predicted age (r = 0.93 vs. 0.88, p < 1e-6 both) 1004 

and  age bias (r = -0.21 vs. r = -0.40, p < 1e-6 both) (Table 7). We further found that the 1005 

predictions when using three tissue types from SPM (GM, WM, and CSF) were better (IXI: 1006 

MAE = 5.08, r = 0.92, p < 1e-6, bias: r = -0.27, p < 1e-6). This is in line with a previous study 1007 

that showed a slight performance improvement when using both GM and WM compared to 1008 

only GM (Cole, Poudel, et al. 2017). Features from different tissue types may carry 1009 

complementary information regarding age, providing better predictions and lower age bias. 1010 

Many previous studies have used GM and WM together as features (Franke and Gaser 2012; 1011 
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Cole, Poudel, et al. 2017; Cole et al. 2018; Cole et al. 2020), and others have used all three 1012 

tissue types (Monté-Rubio et al. 2018; Xifra-Porxas et al. 2021; Hobday et al. 2022). CAT-1013 

derived GMV performed similarly to SPM-derived three tissue types with slightly lower age 1014 

bias for the former (Table 7), showing the suitability of GM for this task following its clinical 1015 

relevance in neurodegenerative disorders (Karas et al. 2004; Wu et al. 2021). Further studies 1016 

are needed to cleanly disentangle the effect of tissue types on different performance criteria 1017 

investigated here.  1018 

5. Conclusion 1019 

Numerous choices exist for designing a workflow for age prediction. The systematic evaluation 1020 

of different workflows on the same data in different scenarios (within-dataset, cross-dataset, 1021 

and test-retest reliability) revealed a substantial impact of feature representation and ML 1022 

algorithm choices. Notably, voxel-wise GM features, especially smoothed with a 4 mm FWHM 1023 

kernel and resampled to a spatial resolution of 4 mm (S4_R4), were better than parcel-wise 1024 

features. Additionally, performing PCA did not affect the prediction performance, but it can 1025 

help reduce computational resources. ML algorithms, including Gaussian process regression 1026 

with the radial basis kernel, kernel ridge regression with polynomial kernel degree 1 or 2, and 1027 

relevance vector machine with linear and polynomial degree 1 kernels, performed well. 1028 

Overall, some workflows performed well on out-of-site data and showed high test-retest 1029 

reliability but only moderate longitudinal reliability. Consistent with the literature, we found a 1030 

higher delta in Alzheimer’s and mild cognitive impairment patients after correcting the delta 1031 

with a large sample of controls. Our results provide evidence for the potential future application 1032 

of delta as a biomarker but also caution regarding analysis setup and data used for behavioral 1033 

correlations and bias correction. Findings from the current study can serve as guidelines for 1034 

future brain-age prediction studies. 1035 
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