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Abstract

Modeling transient aqueous electrolyte systems is increasingly gaining attention for de-
signing and optimizing processes where the equilibrium composition becomes relevant.
This work revisits appropriate formulations to cope with embedding equilibrium condi-
tions in transient systems. We follow the equation-oriented approach of writing balance
equations in terms of reaction invariants and replacing the embedded Gibbs free energy
minimization problem with a reformulation of the Karush-Kuhn-Tucker conditions to
yield a system of differential-algebraic equations. We provide the open-source Modelica
package ElectrolyteMedia for the modeling of transient aqueous electrolyte systems un-
der consideration of chemical equilibrium in combination with detailed thermodynamic
model equations for gas, liquid, and solid phases. With tailored initialization algorithms,
we can integrate customized models using numerical solvers provided by a Modelica sim-
ulation environment, e.g., Dymola. We show simulation results of multiple case studies
ranging from the simulation of titration experiments to complex unit models.

Keywords: Modelica, electrolyte thermodynamics, dynamic modeling, chemical
equilibrium

1. Introduction

Aqueous electrolyte solutions are complex systems with numerous dissolved species
that may dissociate and interact with potential gas and solid phases. Quantifying the
species composition in these systems is relevant for designing and optimizing chemical
processes. The mathematical representation of these systems involves nonlinear ther-
modynamic models and species concentrations varying by multiple orders of magnitude.



With generally fast rates of dissociation reactions and mass transfer at phase bound-
aries, the system can typically be considered at equilibrium, enabling the computation
of equilibrium species concentrations by minimizing Gibbs free energy.

In addition, modeling the transient behavior of such aqueous electrolyte solutions re-
quires equilibrium constraints on species compositions while adhering to prescribed dy-
namic mass and energy balances. At constant overall composition and thermodynamic
state, the forward and reverse reaction rate of equilibrium reactions and mass transfer
at phase boundaries are equal. Hence, the species composition remains constant. How-
ever, with imposed transient mass and energy balances, the forward and backward rates
diverge (net reaction rate nonzero), leading to a change in species composition. Addi-
tionally, phases may disappear and reappear, resulting in the nonsmooth behavior of
transient systems [1, 2].

Two competing approaches have been proposed to impose chemical equilibrium on a
transient, complex multi-phase system: a sequential approach and an equation-oriented
approach [3, 1, 2]. Alternative terminologies are the operator splitting technique and
global implicit method, respectively [4]. In the sequential approach, the global solution
of the Gibbs free energy minimization problem of a closed system at constant tem-
perature, pressure, and overall composition leads to the correct number of phases and
their species compositions at chemical equilibrium [3]. Transient systems with chang-
ing temperature, pressure, and overall composition globally minimize the Gibbs free
energy at each time step, which may result in a high computational effort. Alterna-
tively, the equation-oriented approach embeds the chemical equilibrium conditions as
algebraic equations into the system of differential-algebraic equations (DAE) [5]. Here,
the closed-system constraint is intrinsically given in the mass balance equations, while
energy balance and constitutive equations determine temperature and pressure. This
strategy allows straightforward model integration while adhering to the chemical equi-
librium conditions. The chemical equilibrium conditions result from the Karush-Kuhn-
Tucker (KKT) conditions that denote the first-order optimality criterion of the Gibbs
free energy minimization problem. The KKT conditions are necessary and sufficient only
in the case of convex Gibbs free energy of the underlying system [3].

Generally, solution approaches to minimizing the Gibbs free energy problem consider
a stoichiometric and a nonstoichiometric formulation [6]. The stoichiometric formulation
requires the manual selection of linearly independent reactions with stoichiometries satis-
fying the atom balance and the representation of Gibbs free energy in terms of the extent
of reaction. Then, the first-order necessary conditions of the unconstrained minimization
problem lead to a form of the law of mass action (LMA) equations. In contrast, the
nonstoichiometric formulation considers the minimization of Gibbs free energy in terms
of moles, subject to the closed-system constraint, e.g., in the form of the atom balance
with the element-abundance matrix denoting the number of atoms in each species.

The stoichiometric and nonstoichiometric formulations become equivalent under the
three following conditions [6]: First, the Gibbs free energy in terms of the extent of the
reaction and the moles of species is convex. Second, the stoichiometric formulation con-
siders all independent reactions of the present species. Third, the Lagrangian multipliers
in the KKT conditions of the nonstoichiometric formulation cancel out by multiplying
the derivative of the Lagrangian £ with respect to moles n by the nullspace of the
element-abundance matrix. The nullspace of the element-abundance matrix, in return,
physically denotes a linear combination of the stoichiometry matrix in the stoichiometric
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formulation.

Abundant software applications can compute the equilibrium composition in aque-
ous electrolyte solutions. Extensive databases with equilibrium constants of reactions
and mass transfer in aqueous electrolyte systems enable their use in software based on
LMA to compute species equilibrium, e.g., WATEQ [7], EQ/3 [8], and PHREEQC 9],
to name a few. A significant disadvantage of the LMA approach is that it only considers
stable species with a nonzero mole amount, therefore, requiring stability tests [10]. More
sophisticated software employs local, nonstoichiometric Gibbs free energy minimization,
e.g., GEMS [11, 12] and Reaktoro [13]. This approach enables the computation of stable
phase compositions for a predefined closed-system constraint and given temperature and
pressure. In their solver, GEMS3K, Kulik et al. [11] employ an interior-point method to
minimize the Gibbs free energy efficiently at given composition, temperature, and pres-
sure. Leal et al. [14] provide the derivation of KKT conditions and the efficient solution
of the nonlinear system of equations by perturbing the complementarity conditions of the
KKT conditions for faster convergence. In a similar procedure, they provide a solution
strategy for an LMA approach that results in the same formulation as the local Gibbs
free energy minimization [10].

The efficient computation of Gibbs free energy in the software mentioned above is
crucial. The goal is to enable fast convergence of reactive mass transfer systems, e.g., to
compute phase assemblage and species concentration in subsurface reservoir simulations
using temporal and spatial discretization [11]. The solution strategy for these systems
commonly employs the sequential approach by solving mass balances and Gibbs free
energy minimization sequentially. However, this strategy requires the step size to be
sufficiently small to capture the influencing effects of both mass transfer and equilibrium.

For aqueous electrolyte systems, the formulation of an equation-oriented approach
is generally considered inefficient [4]. Yeh and Tripathi [15] argue an equation-oriented
approach that includes spatial discretization is impractical due to excessive CPU time.
Instead, sequential procedures enable the simulation of reactive mass transfer problems
solved with spatial and temporal discretization. However, the benefits of a sequential ap-
proach vanish in aqueous electrolyte systems that do not require a high number of spatial
discretization nodes. Hence, the advantages of an equation-oriented formulation become
apparent, as it enables control and dynamic optimization of such systems. Furthermore,
from an engineering perspective, the set-up of additional constitutive equations, e.g., vol-
ume constraints, next to differential and algebraic equations that describe the equilibrium
conditions is more intuitive than incorporating these in a sequential solution strategy.

This work introduces the open-source modeling framework ElectrolyteMedia in the
object-oriented modeling language Modelica based on the equation-oriented approach
for modeling transient aqueous electrolyte systems under consideration of reaction and
phase equilibria. The framework enables the dynamic modeling of user-specific aqueous
electrolyte systems coupled with custom balance equations. In the following, we present
the general formulation of balance equations and the constitutive equations to denote
chemical equilibrium. We discuss the necessary and sufficient conditions and underlying
assumptions for the minimization of Gibbs free energy. We provide the general aspects
of the implementation of the equation-oriented formulation within the BaseProperties
model of the Media package within the Modelica Standard Library [16]. We demonstrate
the framework in exemplary simulation studies, including titration simulations, an ap-
plication in unit operation models, and a reactive mass transfer simulation. We close

3



with concluding remarks on the applicability and limitations of this approach and future
avenues for framework extensions.

2. Differential-algebraic model equations for aqueous electrolyte systems

In this Section, we derive the formulation of the equation-oriented representation
of transient aqueous electrolyte systems. We formulate all equations on a mass basis
and note that a molar basis works analogously. The reason for mass-based equations is
the mass-based notation in Modelica [16] that becomes relevant in Section 3. We use
the notation of Smith and Missen [6] to distinguish chemical species by their chemical
formulae, and the phase in which they occur, e.g., HoO(g) and HoO(l) are distinct species.

2.1. Modeling of flows with equilibrium conditions

We consider two approaches to address the formulation of dynamic mass balance
equations with underlying chemical equilibrium constraints. First, we write balance
equations with an embedded Gibbs free energy minimization problem that we replace by
its first-order optimality conditions in Section 2.1.1. Second, we revisit the approach of
reformulating a high index DAE that incorporates species balance equations accounting
for net reaction rates of equilibrium reactions in Section 2.1.2.

2.1.1. Embedded Gibbs free energy minimization

The DAE formulation to describe transient aqueous electrolyte systems with embed-
ded equilibrium constraints originates from the work of Ploch et al. [17], who provide
a thorough analysis of semi-explicit DAE with embedded optimization criteria with ap-
plication in the formulation of metabolic reaction networks. First, we write the linearly
independent atomic mass balances (Eq. (1a)) to obtain the correct amount of atom mass
in each time step. The embedded optimization problem is then the minimization of Gibbs
free energy (Eq. (1c)), subject to the closed-system constraint (Eq. (1d)), and nonneg-
ativity of species mass (Eq. (le)). The DAE with embedded equilibrium composition
then reads

m(t) = min(t) — Mouw(t),  m(0) = m?, (1a)
0 = g(m(t), meq(t),y(t)), (1b)
Meq(t) € arg mrflierﬁy G(Meq, T, p), (1c)
s.t. 0= Ame, — m(t), (1d)

0 < 7iteq, (le)

where m € R’ and me, € R! are the atomic mass vector and the species mass vector in
equilibrium, respectively. J is the number of elements in the considered system and I is
the number of chemical species. M, € R? and My, € R’ denote the sum of entering and
exiting streams, respectively. m° € R” is the initial element mass vector in the system.
Constitutive equations are given in Eq. (1b) with y being further algebraic variables, e.g.,
to determine feed flow rates or to impose volume constraints (dim(g) = dim(y)). G is
the Gibbs free energy of the entire system with fixed T" and p denoting temperature and
pressure, respectively. 171, denotes the equilibrium species mass vector whose elements
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are the decision variables in the minimization problem. A € R7*! is the mass-based
element abundance matrix required for the closed-system constraint of the embedded
optimization problem.

To cope with the embedded minimization problem in Egs. (1c¢)-(1e), we can apply
the Karush-Kuhn-Tucker (KKT) conditions [6]. The embedded optimization problem
satisfies the linear independence constraint qualification [18]. Hence, with the constraint
qualification, the KKT conditions are generally a necessary first-order optimality crite-
rion. They are also sufficient if the underlying minimization problem is convex. The
closed-system constraint in Eq. (1d) is linear, and the Gibbs free energy functions of
each phase (aqueous, solid, or gaseous) in electrolyte thermodynamics are typically con-
vex. We argue that a nonconvex Gibbs free energy function would result in a potential
phase split. Only in the case of two-phase equilibrium systems, e.g., liquid-liquid equi-
librium, where one Gibbs free energy model describes the heterogeneous nature of the
system, do the Gibbs free energy functions become nonconvex, e.g., [2]. However, in
modeling aqueous electrolyte systems, each phase is described by a distinct Gibbs free
energy model.

Substituting the embedded optimization problem, Egs. (1c) - (1e), by the KKT con-
ditions and some further reformulation yields [17, 10]

m(t) = min(t) — Mou(t), m(0) = m’, (2a)
0 = g(m(t), meq(t), a(t), K(1), y(t)), (2b)
0 = Amey(t) — m(t), (2c)
0=v(lna(t) — z(t)) — In K(¢), (2d)
0 = z(t)meq(t), (2e)
0 < z(t), Mg (1), (2f)

where v € R®*! is the mass based stoichiometry matrix of independent reactions and
mass transfer with R = I — J being the number of independent reactions. z are reformu-
lated Lagrange multipliers, a are the species activities, K are equilibrium constants of
equilibrium reactions and mass transfer. We refrain from explicitly writing constitutive
equations for activities and equilibrium constants, and incorporate them in Eq. (2b).
Eq. (2d) represents a relaxed form of logarithmic law of mass action that remains valid
for vanishing species mass [2, 5, 10]. The reformulated Lagrangian multipliers z become
nonzero in case of species disappearance (Eq. (2e)), and then relax the logarithmic law
of mass action equations in Eq (2d). In summary, DAE (2) is of index-1, semi-explicit
and equivalent to DAE (1) with the embedded minimization of Gibbs free energy.

2.1.2. High index DAE formulation

An alternative approach considers the equilibrium in terms of equilibrium reactions
in the differential balance equations. The mass action equations implicitly provide in-
formation on these equilibrium reaction rates. This approach originates from Moe et al.
[19] and is applied to electrolyte systems by Kakhu and Pantelides [5]. The semi-explicit
DAE consists of differential equations (Eq. (3a)), the logarithmic law of mass action



(Eq. 3b), and further potential algebraic equations (Eq. (3¢)):

Meeq(t) = Min () — Moyt (t) + 77 (1), Meq(0) = mgq, (3a)
0=vina(t) —In K(t), (3b)
0 = g(meq(t), a(t), K (1), y(1), (3¢)

where r € R is the vector of net rates of reactions and mass transfer. These rates are
algebraic variables and only appear in the differential equations. Hence, the algebraic
equations cannot be solved for r. Therefore, DAE (3) is smooth, but its differential index
is greater than one.

To obtain a DAE of differential index-1 that may be solved with common numeri-
cal solvers [20], three options are available: (1) replacing algebraic variables r with the
derivative of the extent of reaction (r = £), (2) index reduction via differentiation [21],
and (3) reformulation in terms of reaction invariants [19]. The first option renders a
higher number of differential states and results in an implicit DAE that can be a chal-
lenge for some numerical solvers [20]. The second option requires the differentiation of
thermodynamic equations that can be costly, but the knowledge of reaction rates and
mass transfer rates becomes apparent. However, the replacement of algebraic variables
and the differentiation of algebraic equations still requires the consistent choice of initial
conditions that fulfill the law of mass action equations. These drawbacks make the ap-
plication of the differentiation of algebraic equations and the replacement by differential
variables rather difficult in a generalized formulation.

Consequently, we decide on reformulating differential equations in terms of reaction
invariants. This approach leads to a reduced number of differential equations while
setting the initial conditions is straightforward. To do so, we multiply the differential
equations in Eq. (3a) with the nullspace A € R!*7 of the mass-based stoichiometry
matrix, for which ATvT = 0. Hence, this multiplication eliminates the reaction rates r
from the differential equations (ATvTr = 0). The linear correlation of reaction invariants
and full species mass vector in Eq. (4¢) is a new (nontrivial) algebraic equation introduced
to the DAE by this approach. It complements the set of equations to an index-1 DAE:

m(t) = AT(mm(t) mout( ), m(0) =ATm’ (4a)
0=vina(t) —In K(t), (4b)
0 = ATt ) m(t), (4¢)
0 = g(m(t), meq(t), a(t), K (1), y(t))- (4d)

We note that an identical formulation results from a time-scale analysis of reaction rates
[22, 23, 24]. The net rates of equilibrium reaction and mass transfer are fast and cancel
out using singular perturbation theory. The obtained algebraic equations then denote
the law of mass action equations.

2.1.8. Formulation similarity
Although DAE (4) inherently comprises information on the reaction equilibrium, we
observe a structural similarity to DAE (2), i.e., the flow equations with the embedded
optimization criteria. However, the meaning of the variables differ: First, DAE (2)
incorporates differential equations with physical meaning, i.e., they balance the atomic
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mass m. This is required for the closed system constraint in Eq. (2¢). In contrast,
Eq. (4a) balances a linear combination of the atomic mass m that is computed solely
from the nullspace of the mass based stoichiometry matrix v. In fact, the mass-based
element abundance matrix AT in DAE (2) meets the requirement for the nullspace of
the mass-based stoichiometry matrix v, i.e., AvT = 0. Second, DAE (4) may become
singular in case of vanishing species masses, e.g., in case of complete dissolution of a
mineral phase in an aqueous solution. This is mitigated in DAE (2) with the reformulated
Lagrangian multipliers z and the complementarity conditions comprising Egs. (2e) and
(2f). In other words, z; allows for the corresponding meq ; to become zero.

However, DAE (2) is nonsmooth, as the embedded KKT conditions allow the non-
negativity constraints denoted by the complementarity conditions in Egs. (2e) and (2f)
to become active/inactive at any point in time. Therefore, DAE may be ill-posed with-
out reformulation. Especially in combination with aqueous concentrations varying by
magnitudes and nonlinear thermodynamic models, we found the DAE integration to fail
in multiple cases, as the Jacobian is close to singularity.

2.2. Smooth approzimation

We follow a smoothing approach, i.e., we regularize the complementarity conditions
with a small parameter 7 > 0 that leads to a smooth DAE by substituting Eq. (2¢) by
[25, 10]

0=2zi({t)Mmeqi(t) —7, i=1,...,T (5)

We reformulate Eq. (5) to the smoothed Fischer-Burmeister function [26, 27] to enforce
the nonnegativity of meq; and z; to hold (Eq. (2f)):

0= 24(6) + Meqi(t) = \/2(t)2 +meqi(t)? + 27, i=1,..1 (6)

This reformulation is equivalent to the regularized complementarity conditions (Eq. (5))
and leads to a well-posed DAE with smoothed complementarity conditions [28]. Yet, in
aqueous electrolyte systems, the species masses can differ by multiple orders of magni-
tude. Therefore, the reformulation of complementarity constraints can still lead to failing
DAE integration due to small species masses, e.g., My g+ becomes small in alkaline solu-
tions. As a remedy, from a physical point of view, using an educated guess, we can decide
a priori which species we expect to be present at all times. This assumption simplifies
DAE (2) by eliminating the Langrangian multipliers and complementarity conditions for
species ¢ being always present.

To make use of the benefits of each formulation, we combine the two DAE formulations
(2) and (4) by (i) writing balance equations in terms of reaction invariants that are
a generalization of the atomic mass balance, and (ii) eliminating the complementarity
conditions for species that are present at all times. From a Gibbs free energy minimization
perspective, eliminating complementarity conditions of some species is equal to neglecting
the nonnegativity constraints of these species in the embedded optimization problem in



Egs. (lc) - (1e). In summary, we consider the following DAE:

T?L(t) = Thin(t) — Moyt (t)a ’ﬁ’I,(O) = )‘Tmoa (7&)
0=v(lna(t) — Dz(t)) —In K(t), (7b)
0 = ATmeq(t) — m(t), (70)
0= 2i() + Meqi(t) = A/2(0)2 +meqi(t)? + 27, i=1,..1, (7d)
0 = g(m(t), meq(t), a(t), K(1),y(t)), (7e)

where D is a diagonal matrix for which holds

1 if meq; =0,
Dy =1{ 1 Mea i=1,...,1. (8)
0 if meq >0,

2.8. DAE initialization

The initialization of a DAE involves setting initial conditions of differential variables
and initial guesses of algebraic variables. In DAE (7), the initial conditions m(0) are
calculated from an initial species mass vector m® with species masses initially present
in the system. These species masses do not need to be in equilibrium but rather denote
the amount of each species in its initially undissociated, solid, liquid, or gaseous state.

With given initial conditions, the DAE integrator needs to solve a nonlinear system
of equations at ¢t = 0 to start the DAE integration. Modelica is capable of solving this
problem by employing a Newton solver. However, it is likely to fail in the case of vari-
ables being close to zero. In other words, an initialization failure is expected for species
concentrations in the liquid phase and in the vicinity of disappearing or reappearing
chemical species. The iterative procedure allows negative values of these variables, which
makes the initialization nonphysical. Additionally, logarithmic mathematical expressions
in thermodynamic models, i.e., for the excess Gibbs free energy, do not allow negative
values within Modelica’s Newton iterations to solve the nonlinear system of algebraic
equations. Hence, the initialization of aqueous electrolyte system models commonly fails
without providing sufficiently good start values. In the following, we distinguish between
two cases. The first case is the calculation of the equilibrium composition at given tem-
perature and pressure. We then extend this method to the case when either temperature
or pressure is unknown, but instead a further intensive thermodynamic property is given,
i.e., enthalpy, entropy, or density.

One method to set start values is to provide start values by hand for each specific
simulation. However, this requires the user to have expert knowledge of the considered
system. Instead, a computational approach allows the calculation of the species equilib-
rium composition by providing only the species masses m0 initially added to the system.
We can distinguish between two methods for the computation of the equilibrium com-
position: A dynamic approach and an iterative approach. The dynamic approach [29]
considers a DAE with dynamic mass balances for each chemical species and net reaction
rates that let the system converge into the equilibrium composition at a steady state.
In other words, the dynamic simulation converges toward a steady state that denotes
the equilibrium composition. We applied this approach in previous work on modeling
direct mineral carbonation [30]. Still, we found it cumbersome because it requires a
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separate DAE simulation to find the equilibrium composition. Alternatively, an itera-
tive approach is more suitable for computing the equilibrium composition, as we can
incorporate this procedure directly into the model to provide initial guesses. We can use
the numerous iterative procedures applied in the sequential approach to model transient
aqueous electrolyte systems [11, 12, 10, 14]. In detail, we adopt the approach by Leal
et al. [10], who compute equilibrium compositions at constant temperature and pres-
sure via the minimization of Gibbs free energy by applying KKT conditions and solving
the underlying system of equations with an interior-point method [18]. The derivation
of nonlinear equations is similar to Eqgs. (2c¢)-(2e), however, with a mole based closed
system constraint and regularized complementarity conditions:

0= ApTteq — 7 (9a)
0=v(lna—z)—-InK (9b)
T = ZiNeq,is i=1,...,1 (9¢)

where 1 = Ann® with A, denoting the nullspace of the molar stoichiometric matrix Ap,.
The unknowns in Eq. (9) to be solved for are the equilibrium species moles neq and the
reformulated Lagrangian multipliers z. In line with Leal et al. [10], we apply a Newton
method with an approximation of the logarithmic activity derivative in each iteration to
be

dln(a;) dln(y)) 1-w
on; - ony; B g

i=1,...,1, (10)

where y; is the molar fraction of species i in its corresponding phase. Furthermore,
in each iteration, the Newton step of the reformulated Lagrangian multipliers Az can
be calculated explicitly, reducing the number of unknowns to the number of chemical
species I. This reformulation requires the Newton solver only to solve for species moles
Teq. Additionally, we limit the step size in each Newton iteration to keep species moles
Neq,i strictly positive. We refer to Leal et al. [10] for further detail on the algorithm.

The iterative procedure for the equilibrium calculation requires fixed temperature and
pressure. However, in a transient aqueous electrolyte model, temperature and pressure
are not always known at t = 0. Instead, next to the initial species moles n°, a combina-
tion of two intensive thermodynamic properties defines the thermodynamic state of the
system. The Modelica Media library requires the combinations (1) temperature-pressure,
(2) pressure-enthalpy, (3) pressure-entropy, and (4) temperature-density as input vari-
ables for the initialization of a DAE. Therefore, we extend the initialization with given
temperature and pressure to be applicable for the combinations of the intensive thermo-
dynamic properties (2)-(4). Following Smith and Missen [6], we use an inner-outer algo-
rithm to find the equilibrium composition at given intensive thermodynamic properties.
Alternative simultaneous procedures solve the composition and temperature/pressure in
one instant, but they reportedly suffer from convergence difficulties [6]. Here, we guide
the inner-outer algorithm for given pressure and enthalpy and note that the approach
works analogously for other combinations of intensive thermodynamic properties.

First, we set the temperature to a feasible value T° at a given pressure and solve
the equilibrium composition. In the next step, we alternately calculate the temperature
T*+1 at the given composition z* using a Newton-Raphson procedure (outer algorithm)
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and calculate a new composition £**1 at T**! (inner algorithm). The Newton-Raphson
method calculates the enthalpy difference

and performs an iteration step

f(Tk) _ Tk _ h(Tk?pv wk) —h

Tk-‘rl _ Tk: o
f/(Tk) CP(Tkap7 mk) ’

(12)

where ¢, is the heat capacity of the underlying system. The final temperature and
composition is given, once f(T") < e with € being a sufficiently small value.

Next to the initial guesses for the initial composition and temperature/pressure of
the aqueous electrolyte system, the modeler can provide further initial guesses manually.
Otherwise, Modelica uses generic start values and performs its own Newton iteration
scheme for the initialization of the DAE before starting integration. We provide robust
procedures for initializing the DAE with embedded equilibrium conditions with these
iterative methods.

3. ElectrolyteMedia library

We introduce the ElectrolyteMedia library that implements the methods presented
in Section 2 for transient modeling of aqueous electrolyte systems in multiple Media li-
braries that extend the Media package of the Modelica Standard Library. It is available
as an open-source third-party Modelica library [31], also available at http://permalink.
avt.rwth-aachen.de/?1d=807420 under the 3-clause BSD license. The object-oriented
package provides a standardized structure for calculating intensive thermodynamic prop-
erties of a fluid medium incorporating thermodynamic models and equilibrium conditions
of aqueous electrolyte systems. The intensive thermodynamic properties of the Media
libraries find use in component models comprising mass and energy balances. Modelica
provides generic models containing mass and energy balances in the Fluid library of the
Modelica Standard Library. Alternatively, user-specific models with customized mass
and energy balances can be implemented and interfaced with the Media package models
to calculate intensive thermodynamic properties.

Distinct thermodynamic models for each aggregate state (gas, liquid, solid) provide
the basis for calculating the thermodynamic properties of chemical species. We im-
plement these as Modelica functions with explicit, intensive thermodynamic properties
as inputs. The gas phase considers the ideal gas model with a temperature-dependent
heat capacity and the Peng Robinson equation of state [32]. Within the liquid phase,
we distinguish between solutes and solvent water. The IF97 formulation readily pro-
vides water properties implemented as a separate medium within the Modelica Standard
Library [33]. We implement the revised Helgeson-Kirkham-Flowers model for the ther-
modynamic properties of solute species at infinite dilution [34]. Excess Gibbs free energy
models, namely the extended Debye-Hiickel model, the Bromley model [35], and the
Pitzer model [36], account for the nonideal contributions with increasing ionic strengths.
Solid species properties are assumed to be ideal (no consideration of solid mixtures) based
on an equation of state and a heat capacity polynomial [37]. The database spronshp.dat
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provides the parameter values for the ideal gas model, the revised Helgeson-Kirkham-
Flowers model, and the solid properties model used in the SUPCRTBL software for the
computation of single species thermodynamic properties [38].

Based on these thermodynamic property functions, different media for the gas phase
(GasPhase), the liquid phase (LiquidPhase), and the solid phase (SolidPhase), each
consisting of multiple species, are implemented. Within the gas phase and the solid
phase, we do not consider any reaction equilibrium. We use the single-phase property
functions to extend multi-phase media, namely GasLiquidPhase and SolidLiquidPhase.
The LiquidPhase and GasLiquidPhase media assumes all species to be nonnegative, i.e.,
D;; = 0 for all chemical species i. The SolidLiquidPhase package enables solid species
to disappear and reappear, i.e., D;; = 1 for all solid species i, whereas liquid species
are always present. The object-oriented nature of the Modelica framework allows these
media extensions for user-specific models.

A user interface enables setting all required parameters to fully specify a medium. In
detail, the modeler sets the chemical species and their number in each phase. Further-
more, the modeler selects thermodynamic property models for the gas and liquid phases.
Their corresponding parameters for the thermodynamic models are stored in a Modelica
record structure. Furthermore, the atomic stoichiometry matrix v,,, and a reference
composition, temperature, and pressure for generic initialization are required. We refer
to the User Guide of the ElectrolyteMedia package for further details on setting up a
user-specific medium.

A fully-defined medium allows instantiating the BaseProperties model in a user-
specific unit model containing the mass and energy balances. The mass balance equations
need to be written in terms of reaction invariants as in Eq. (7a). The algebraic equations
(7b) and (7d) in combination with further constitutive equations, e.g., for the calculation
of specific enthalpy, density, and mole fractions, are given in the BaseProperties model.
The BaseProperties model requires the normalized reaction invariant vector and two
further intensive thermodynamic properties, e.g., temperature and pressure, specified in
the unit model.

This object-oriented implementation incorporating a database with a wide range of
chemical species allows for efficient modeling of transient aqueous electrolyte systems.
Furthermore, the equation-oriented approach allows for dynamic optimization and con-
trol of chemical systems and processes that involve aqueous electrolyte systems. The
framework is not limited to the implemented media packages and extensions to different
thermodynamic property models, and alternative databases are possible.

4. Application of ElectrolyteMedia in case studies

In this Section, we provide illustrative examples to show the applicability of the
object-oriented framework for the dynamic modeling of aqueous electrolyte systems. We
offer three case studies with increasing unit model complexity and the number of consid-
ered embedded equilibrium systems. First, we show a simulation of a laboratory-scale
titration in Section 4.1. Subsequently, we underline the framework’s capabilities com-
bined with a Modelica test model based on the Fluid library by using its unit models
in Section 4.2. Finally, in Section 4.3, we provide a computationally expensive reactive
transport model with many embedded equilibrium conditions due to the discretization
of partial differential balance equations.
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Within this study, all simulations are performed using Dymola 2020 [39]. For inte-
gration, we use the integrator LSODAR [40] with an integration tolerance of 1075,

4.1. Titration simulation

We model the conventional set-up of a laboratory-scale titration with an open volume
and a constant feed flow rate representing the beaker containing the analyte and the
titrant being dosed in by a burette, respectively. We consider the titration of a phosphoric
acid (H3POy) solution of by,po, = 0.2mol/kg, 1 ens With an initial volume of V0 = 25 mL
using a sodium hydroxide (NaOH) solution of bnaon = 0.1 mol/kg, jvent at a feed flow rate
of Myitrant = 25 %. The simulation is performed at ambient temperature (T' = 25°C)
and ambient pressure (p = 1bar). We use the LiquidPhase medium package, as the
system is in the liquid phase only. We consider the extended Debye-Hiickel model to
account for nonideality. Phosphoric acid is a triprotic acid. Hence, the liquid phase
contains the chemical species H3sPOy4, HoPO, HPOZ*, POZ*, Na®, OH, H", and H,O.
The temporal course of the pH and the species molalities are shown in Figs. 1a and 1b,
respectively. The simulation results predict the dissociation state over the course of the
experiment with deprotonation of phosphoric species with increasing pH.

Titrant volume [mL]
0 25 50 75 100 125 150
T

12 T T T T T T T
0151 — H3PO, --- H,PO; |
10} o N T Hpoi* o+ PO”
— Na* OH™
- 81 7 g% 01l cee [T i
T 6 1 £
o = .
Al | S 005 |
= -,
2 B 4 ‘-. '-".'
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0 10 20 30 40 50 60 6 8 10 12
Time [s] pH [—]
(a) pH over time and titrant volume. (b) Species molalities over pH.

Figure 1: Titration of a 25mL solution of 0.2mol/kg,, eny Phosphoric acid with a titrant of
0.1 mol/kg1veny NaOH. The titrant feed increases the pH resulting in the dissociation of phospho-
ric acid.

4.2. Modelica Media test model simulation

To show the modeling capabilities in combination with the Modelica Fluid library,
we consider a Modelica test model that comprises a system of constant volume with
V = 1m?3, one constant inlet mass flow rate, and one outlet modeled as a pipe model
(cf. Fig. 2). Here, we assume an ideally mixed gas-liquid phase and hence consider
the GasLiquidPhase package. The gas phase contains HyO, CO3, and Os, and the
liquid phase comprises CO2, HCO3, CO%’, Na™, CI', OH", H', and H,0O. Gaseous CO,
dissolves in the liquid phase and dissociates into HCO3; and CO?{, whereas Os is only
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present in the gaseous phase. Gaseous HsO is in equilibrium with liquid HO. The
volume is initially composed of a gas phase with 80 wt.% COs and 20wt.% O, and
a liquid phase containing 1mol/kg, jvens NaCl that is fully dissociated. The system is
initially composed of 80 wt.% liquid phase. The volume is initially at ambient conditions,
i.e., T = 25°C and p = 1bar. The constant feed flow rate of 1 %g is composed of the
same gas phase composition, and the same liquid phase fraction, but the liquid phase is
composed of a solution containing 0.1 mol/kg  ens NaOH at a temperature of T' = 50 °C.

fixedMassFlowRate volume ambient
shortPipe

k=1 kg/s/0.1 bar
1 kgfs V=1 me

Figure 2: Illustration of a Modelica model based on the Fluid library for media testing. The model
comprises a fixed mass flow rate into a constant volume with an outlet consisting of a pipe model.

Throughout the simulation, the composition and temperature in the volume asymp-
totically approach the specifications of the constant inlet mass flow rate. Fig. 3 shows
that the alkaline feed increases the pH of the initially acidic liquid phase of the volume.
The temperature increases from initially 25°C to 50°C, and the pipe imposes a pres-
sure difference of 0.1 bar resulting in an overall pressure of p = 1.1 bar. The simulation
shows that the coupling of complex unit models is feasible, thus justifying the approach
of embedding the equilibrium constraints within the algebraic equations of the medium

model.

8
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(a) pH in the liquid phase over time. (b) Pressure and temperature over time.

Figure 3: Simulation results of the constant volume show asymptotic approaching of feed flow rate
conditions with a pressure difference of 0.1 bar due to the pipe at the volume outlet.
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4.3. Reactive transport simulation

The previous case studies each involve one embedded equilibrium problem to be solved
in combination with suitable balance equations. These case studies underline the general
applicability in small-scale modeling problems. In contrast, transient reactive transport
models incorporate many embedded equilibrium problems as the underlying differential
equations are spatial discretizations for numerical integration. In this section, we show
the capabilities and limits of the DAE formulation by employing a reactive transport
simulation with a total of 20 embedded equilibrium problems.

We consider the exemplary case study of Leal et al. [10] who simulate the injection of
a CO, saturated brine into a porous rock with an initial volumetric composition of 98 %
quartz (SiO2) and 2% calcite (CaCOs) and an initial porosity of ¢ = 50%. The brine
constitutes 0.9 mol/kg jvent NaCl, 0.05 mol/kg. 1vene MgCly, 0.01mol/kg, i o CaCls,
and 0.75 mol/kg, jvent CO2. The brine flows through the porous rock at a temperature
of T = 60°C and a pressure of 100 bar with a Darcy velocity of up = 1.2 x 107° bt
With the given brine composition, CaCOj is expected to dissolve allowing the formation
of dolomite (MgCa(COs3)2). Hence, we consider the SolidLiquidPhase package, where
pure solid phases may disappear and reappear. Considered solid phases are quartz,
calcite and dolomite and the species in the liquid phase are CO2, HCO3, CO%‘, Mg?T,
Ca®", Na™, CI', OH', H', and H,O0.

We only consider the convective liquid flow and neglect potential dispersion and dif-
fusion effects. The aim is only to show the dynamic computation of the equilibrium
composition in a large-scale problem. Furthermore, dispersion and diffusion effects may
lead to undesired oscillation during integration due to discretization. The partial differ-
ential mass balance of reaction invariants then reads

%—T +V-mu=0 (13)
We assume a one-dimensional flow and discretize Eq. (13) with finite volumes to obtain
reaction invariant balance equations

M(t) = Min i (t) — Mout k() k=1,... K (14a)
my(0) = ATm) k=1,...,K (14b)
Meout k(1) = ug(t) Adr (t) pl, (AT z(2) k=1,....K (14c)
Min k(1) = Meout k—1(t) k=2,... K (14d)
Min,1 = upApi, AT iy (14e)

where A is the cross-sectional area. wug, ¢, and p}C denote the liquid flow velocity, the
porosity, and the liquid density of volume k, respectively. K is the number of volume
elements resulting from discretization. Then, Eqs. (14) and (7b) - (7e) denote the full
DAE to describe the reactive transport model that includes the equilibrium conditions
(Eq. (7b)), the Fischer-Burmeister function (Eq. (7d)), and the volume constraint of
each element and further constitutive equations (Eq. (7e)). In this case, we assume all
liquid species to be present at all times, and solid species may disappear and reappear.
We consider a total distance of d = 0.2m with an equidistant volume length of Ad =
0.01 m. We set the time horizon to 1000 min and obtain simulation results illustrated in
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Figure 4: Molar concentrations of (a) calcite and (b) dolomite over the discretized distance at different
times. Calcite first starts to dissolve in the brine feed, which enables dolomite formation. With further

progress, dolomite starts to dissolve again in the brine solution. Quartz dissolution in the brine solution
is negligible (not shown).

Fig. 4 showing the molar density of calcite and dolomite over the length of the porous
rock. Due to the different presence of calcite and dolomite at different nodes and times,
the composition of the brine solution changes as well with changing pH of the brine, as
illustrated in Fig. 5. Initially, the solution is composed of water and in equilibrium with
calcite. The brine feed imposes a pH reduction while dissolving calcite, lowering the pH
to 4.5. The formation of dolomite results in a minor pH change, and only when both
dolomite and calcite disappear the pH starts to further reduce to that of the brine feed.

This case study shows that the computation of reactive mass transfer is possible by
employing an equation-oriented approach of discretizing the partial differential equation
and integrating the semi-explicit DAE with a numerical integrator. We note, however,
that the computation of the solution is expensive with integration times in the order
of 1 x 10%s. The high computational cost stems from multiple nonlinear equation sys-
tems within the DAE that remain for the integrator to be solved in each time step after
translation of the model. These nonlinear equation systems include both the equilibrium
conditions and the volume constraints in each volume element. In comparison, the com-
putational time to solve sequential approaches is in the order of 1 x 10's [41]. Hence,
in line with the literature on solving reactive transport models [15], we conclude that a
sequential approach is more suitable for these types of problems.
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Figure 5: The change of present solid phases imposes a shift in pH over the distance, illustrated at
different times.

5. Conclusion and outlook

In this work, we evaluated the equation-oriented approach to describe the transient
behavior of a chemical system at equilibrium by embedding the equilibrium conditions as
algebraic equations in the DAE formulation. We explain the implications of incorporat-
ing the complementarity conditions for the nonnegativity of chemical species as algebraic
equations. The elimination of the nonnegativity conditions from the DAE assumes that
these species are always present, and a smooth approximation of the remaining comple-
mentarity conditions results in a well-posed semi-explicit, index-1 DAE.

The object-oriented implementation of the DAE as multiple Modelica Media pack-
ages for the modeling and simulation of transient aqueous electrolyte systems enables
its reusability for different applications and unit models. Additionally, the framework
implements thermodynamic models in combination with the parameterization for numer-
ous chemical species to compute the thermodynamic properties of gas, liquid, and solid
phases relevant to aqueous electrolyte systems.

With the given framework, we performed exemplary case studies with different com-
plexities to evaluate the applicability of the DAE formulation. The nonideality of ther-
modynamic models and the compositions of species changing by orders of magnitude can
impose the Jacobian to be close to singularity, which makes the numerical integration
costly. Integrating a model with many embedded equilibrium systems, e.g., due to dis-
cretized partial differential equations in reactive transport problems, still works fine. Yet,
sequential approaches generally allow faster convergence. We found the equation-oriented
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DAE formulation suitable for systems that incorporate a limited number of embedded
equilibrium systems.

However, sequential approaches do not necessarily compute the transient behavior
of the aqueous electrolyte system correctly, as the iterative solution of different sets of
equations may result in a propagation of errors. Only in the case of sufficiently small
time steps, the error becomes negligible, which is not always apparent from simulation
results. Hence, for small-scale aqueous electrolyte systems, the advantage of employing
the equation-oriented formulation used in this work lies in the exact solution of the DAE
describing the transient behavior of an aqueous electrolyte system. This approach also
enables the efficient modeling of unit models that incorporate further constitutive equa-
tions, e.g., volume constraints and energy balances. Additionally, the equation-oriented
formulation allows the incorporation of control strategies and dynamic optimization of
these systems. Future extensions of the framework may include additional thermody-
namic models to account for solid mixtures, the incorporation of different databases, and
the implementation of a medium containing gas, liquid, and solid phases.
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