001     1005144
005     20240722100638.0
024 7 _ |a 10.1021/acs.analchem.2c02017
|2 doi
024 7 _ |a 10.34734/FZJ-2023-01332
|2 datacite_doi
024 7 _ |a 35900877
|2 pmid
024 7 _ |a WOS:000835239200001
|2 WOS
037 _ _ |a FZJ-2023-01332
082 _ _ |a 540
100 1 _ |a Weiß, Lennart
|0 P:(DE-HGF)0
|b 0
245 _ _ |a On-Chip Electrokinetic Micropumping for Nanoparticle Impact Electrochemistry
260 _ _ |a Columbus, Ohio
|c 2022
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721139462_10765
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Single-entity electrochemistry is a powerful technique to study the interactions of nanoparticles at the liquid–solid interface. In this work, we exploit Faradaic (background) processes in electrolytes of moderate ionic strength to evoke electrokinetic transport and study its influence on nanoparticle impacts. We implemented an electrode array comprising a macroscopic electrode that surrounds a set of 62 spatially distributed microelectrodes. This configuration allowed us to alter the global electrokinetic transport characteristics by adjusting the potential at the macroscopic electrode, while we concomitantly recorded silver nanoparticle impacts at the microscopic detection electrodes. By focusing on temporal changes of the impact rates, we were able to reveal alterations in the macroscopic particle transport. Our findings indicate a potential-dependent micropumping effect. The highest impact rates were obtained for strongly negative macroelectrode potentials and alkaline solutions, albeit also positive potentials lead to an increase in particle impacts. We explain this finding by reversal of the pumping direction. Variations in the electrolyte composition were shown to play a critical role as the macroelectrode processes can lead to depletion of ions, which influences both the particle oxidation and the reactions that drive the transport. Our study highlights that controlled on-chip micropumping is possible, yet its optimization is not straightforward. Nevertheless, the utilization of electro- and diffusiokinetic transport phenomena might be an appealing strategy to enhance the performance in future impact-based sensing applications
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Music, Emir
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rinklin, Philipp
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Banzet, Marko
|0 P:(DE-Juel1)128653
|b 3
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 4
|e Corresponding author
700 1 _ |a Wolfrum, Bernhard
|0 P:(DE-Juel1)128745
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acs.analchem.2c02017
|0 PERI:(DE-600)1483443-1
|n 33
|p 11600-11609
|t Analytical chemistry
|v 94
|y 2022
|x 0003-2700
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1005144/files/20220711_Manuscript_Wei%C3%9F.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/1005144/files/acs.analchem.2c02017-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1005144/files/20220711_Manuscript_Wei%C3%9F.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1005144/files/20220711_Manuscript_Wei%C3%9F.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1005144/files/20220711_Manuscript_Wei%C3%9F.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1005144/files/20220711_Manuscript_Wei%C3%9F.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1005144
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128653
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128707
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ANAL CHEM : 2021
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAL CHEM : 2021
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-19
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21