001005154 001__ 1005154
001005154 005__ 20240226075353.0
001005154 0247_ $$2doi$$a10.1021/acsami.1c23438
001005154 0247_ $$2Handle$$a2128/34126
001005154 0247_ $$2pmid$$a35089707
001005154 0247_ $$2WOS$$aWOS:000757896200001
001005154 037__ $$aFZJ-2023-01342
001005154 082__ $$a570
001005154 1001_ $$0P:(DE-HGF)0$$aMinopoli, Antonio$$b0
001005154 245__ $$aDouble-Resonant Nanostructured Gold Surface for Multiplexed Detection
001005154 260__ $$aWashington, DC$$bACS Publications$$c2022
001005154 3367_ $$2DRIVER$$aarticle
001005154 3367_ $$2DataCite$$aOutput Types/Journal article
001005154 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678872148_11302
001005154 3367_ $$2BibTeX$$aARTICLE
001005154 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005154 3367_ $$00$$2EndNote$$aJournal Article
001005154 520__ $$aA novel double-resonant plasmonic substrate for fluorescence amplification in a chip-based apta-immunoassay is herein reported. The amplification mechanism relies on plasmon-enhanced fluorescence (PEF) effect. The substrate consists of an assembly of plasmon-coupled and plasmon-uncoupled gold nanoparticles (AuNPs) immobilized onto a glass slide. Plasmon-coupled AuNPs are hexagonally arranged along branch patterns whose resonance lies in the red band (∼675 nm). Plasmon-uncoupled AuNPs are sprinkled onto the substrate, and they exhibit a narrow resonance at 524 nm. Numerical simulations of the plasmonic response of the substrate through the finite-difference time-domain (FDTD) method reveal the presence of electromagnetic hot spots mainly confined in the interparticle junctions. In order to realize a PEF-based device for potential multiplexing applications, the plasmon resonances are coupled with the emission peak of 5-carboxyfluorescein (5-FAM) fluorophore and with the excitation/emission peaks of cyanine 5 (Cy5). The substrate is implemented in a malaria apta-immunoassay to detect Plasmodium falciparum lactate dehydrogenase (PfLDH) in human whole blood. Antibodies against Plasmodium biomarkers constitute the capture layer, whereas fluorescently labeled aptamers recognizing PfLDH are adopted as the top layer. The fluorescence emitted by 5-FAM and Cy5 fluorophores are linearly correlated (logarithm scale) to the PfLDH concentration over five decades. The limits of detection are 50 pM (1.6 ng/mL) with the 5-FAM probe and 260 fM (8.6 pg./mL) with the Cy5 probe. No sample preconcentration and complex pretreatments are required. Average fluorescence amplifications of 160 and 4500 are measured in the 5-FAM and Cy5 channel, respectively. These results are reasonably consistent with those worked out by FDTD simulations. The implementation of the proposed approach in multiwell-plate-based bioassays would lead to either signal redundancy (two dyes for a single analyte) or to a simultaneous detection of two analytes by different dyes, the latter being a key step toward high-throughput analysis.
001005154 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001005154 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
001005154 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
001005154 7001_ $$0P:(DE-HGF)0$$aScardapane, Emanuela$$b1
001005154 7001_ $$0P:(DE-HGF)0$$aVentura, Bartolomeo Della$$b2
001005154 7001_ $$0P:(DE-HGF)0$$aTanner, Julian A$$b3
001005154 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4
001005154 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b5$$eCorresponding author
001005154 7001_ $$0P:(DE-HGF)0$$aVelotta, Raffaele$$b6
001005154 773__ $$0PERI:(DE-600)2936886-8$$a10.1021/acsami.1c23438$$n5$$p6417-6427$$tACS applied bio materials$$v14$$x2576-6422$$y2022
001005154 8564_ $$uhttps://juser.fz-juelich.de/record/1005154/files/Manuscript_ACS%20Applied%20%20%20%20%20%20Materials_Interfaces_Minopoli_rev_no%20track%20changes.pdf$$yOpenAccess
001005154 8564_ $$uhttps://juser.fz-juelich.de/record/1005154/files/acsami.1c23438.pdf$$yOpenAccess
001005154 909CO $$ooai:juser.fz-juelich.de:1005154$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005154 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
001005154 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
001005154 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-11
001005154 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005154 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-11
001005154 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
001005154 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005154 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
001005154 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
001005154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b4$$kFZJ
001005154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b5$$kFZJ
001005154 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001005154 9141_ $$y2023
001005154 920__ $$lyes
001005154 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001005154 980__ $$ajournal
001005154 980__ $$aVDB
001005154 980__ $$aUNRESTRICTED
001005154 980__ $$aI:(DE-Juel1)IBI-3-20200312
001005154 9801_ $$aFullTexts