001005163 001__ 1005163
001005163 005__ 20231027114356.0
001005163 0247_ $$2doi$$a10.1021/acsami.2c21921
001005163 0247_ $$2Handle$$a2128/34131
001005163 0247_ $$2pmid$$a36706051
001005163 0247_ $$2WOS$$aWOS:000931730200001
001005163 037__ $$aFZJ-2023-01351
001005163 082__ $$a600
001005163 1001_ $$0P:(DE-HGF)0$$aCortelli, Giorgio$$b0
001005163 245__ $$aDetermination of Stiffness and the Elastic Modulus of 3D-Printed Micropillars with Atomic Force Microscopy–Force Spectroscopy
001005163 260__ $$aWashington, DC$$bSoc.$$c2023
001005163 3367_ $$2DRIVER$$aarticle
001005163 3367_ $$2DataCite$$aOutput Types/Journal article
001005163 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678872641_13457
001005163 3367_ $$2BibTeX$$aARTICLE
001005163 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005163 3367_ $$00$$2EndNote$$aJournal Article
001005163 520__ $$aNowadays, many applications in diverse fields are taking advantage of micropillars such as optics, tribology, biology, and biomedical engineering. Among them, one of the most attractive is three-dimensional microelectrode arrays for in vivo and in vitro studies, such as cellular recording, biosensors, and drug delivery. Depending on the application, the micropillar’s optimal mechanical response ranges from soft to stiff. For long-term implantable devices, a mechanical mismatch between the micropillars and the biological tissue must be avoided. For drug delivery patches, micropillars must penetrate the skin without breaking or bending. The accurate mechanical characterization of the micropillar is pivotal in the fabrication and optimization of such devices, as it determines whether the device will fail or not. In this work, we demonstrate an experimental method based only on atomic force microscopy–force spectroscopy that allows us to measure the stiffness of a micropillar and the elastic modulus of its constituent material. We test our method with four different types of 3D inkjet-printed micropillars: silver micropillars sintered at 100 and 150 °C and polyacrylate microstructures with and without a metallic coating. The estimated elastic moduli are found to be comparable with the corresponding bulk values. Furthermore, our findings show that neither the sintering temperature nor the presence of a thin metal coating plays a major role in defining the mechanical properties of the micropillar.
001005163 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001005163 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001005163 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x1
001005163 7001_ $$0P:(DE-HGF)0$$aGrob, Leroy$$b1
001005163 7001_ $$0P:(DE-HGF)0$$aPatruno, Luca$$b2
001005163 7001_ $$0P:(DE-HGF)0$$aCramer, Tobias$$b3$$eCorresponding author
001005163 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b4
001005163 7001_ $$0P:(DE-HGF)0$$aFraboni, Beatrice$$b5
001005163 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b6
001005163 7001_ $$0P:(DE-HGF)0$$aMiranda, Stefano de$$b7
001005163 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.2c21921$$n5$$p7602–7609$$tACS applied materials & interfaces$$v15$$x1944-8244$$y2023
001005163 8564_ $$uhttps://juser.fz-juelich.de/record/1005163/files/Manuscript_TC_GC.pdf$$yOpenAccess
001005163 8564_ $$uhttps://juser.fz-juelich.de/record/1005163/files/acsami.2c21921.pdf$$yOpenAccess
001005163 909CO $$ooai:juser.fz-juelich.de:1005163$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005163 9141_ $$y2023
001005163 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
001005163 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005163 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
001005163 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005163 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001005163 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001005163 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001005163 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001005163 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
001005163 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001005163 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2022$$d2023-10-25
001005163 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2022$$d2023-10-25
001005163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b4$$kFZJ
001005163 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001005163 920__ $$lyes
001005163 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001005163 980__ $$ajournal
001005163 980__ $$aVDB
001005163 980__ $$aUNRESTRICTED
001005163 980__ $$aI:(DE-Juel1)IBI-3-20200312
001005163 9801_ $$aFullTexts