001     1005163
005     20231027114356.0
024 7 _ |2 doi
|a 10.1021/acsami.2c21921
024 7 _ |2 Handle
|a 2128/34131
024 7 _ |a 36706051
|2 pmid
024 7 _ |a WOS:000931730200001
|2 WOS
037 _ _ |a FZJ-2023-01351
082 _ _ |a 600
100 1 _ |0 P:(DE-HGF)0
|a Cortelli, Giorgio
|b 0
245 _ _ |a Determination of Stiffness and the Elastic Modulus of 3D-Printed Micropillars with Atomic Force Microscopy–Force Spectroscopy
260 _ _ |a Washington, DC
|b Soc.
|c 2023
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1678872641_13457
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Nowadays, many applications in diverse fields are taking advantage of micropillars such as optics, tribology, biology, and biomedical engineering. Among them, one of the most attractive is three-dimensional microelectrode arrays for in vivo and in vitro studies, such as cellular recording, biosensors, and drug delivery. Depending on the application, the micropillar’s optimal mechanical response ranges from soft to stiff. For long-term implantable devices, a mechanical mismatch between the micropillars and the biological tissue must be avoided. For drug delivery patches, micropillars must penetrate the skin without breaking or bending. The accurate mechanical characterization of the micropillar is pivotal in the fabrication and optimization of such devices, as it determines whether the device will fail or not. In this work, we demonstrate an experimental method based only on atomic force microscopy–force spectroscopy that allows us to measure the stiffness of a micropillar and the elastic modulus of its constituent material. We test our method with four different types of 3D inkjet-printed micropillars: silver micropillars sintered at 100 and 150 °C and polyacrylate microstructures with and without a metallic coating. The estimated elastic moduli are found to be comparable with the corresponding bulk values. Furthermore, our findings show that neither the sintering temperature nor the presence of a thin metal coating plays a major role in defining the mechanical properties of the micropillar.
536 _ _ |0 G:(DE-HGF)POF4-5241
|a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|c POF4-524
|f POF IV
|x 0
650 2 7 |0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|a Condensed Matter Physics
|x 0
650 2 7 |0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|a Biology
|x 1
700 1 _ |0 P:(DE-HGF)0
|a Grob, Leroy
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Patruno, Luca
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Cramer, Tobias
|b 3
|e Corresponding author
700 1 _ |0 P:(DE-Juel1)128707
|a Mayer, Dirk
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Fraboni, Beatrice
|b 5
700 1 _ |0 P:(DE-Juel1)128745
|a Wolfrum, Bernhard
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Miranda, Stefano de
|b 7
773 _ _ |0 PERI:(DE-600)2467494-1
|a 10.1021/acsami.2c21921
|n 5
|p 7602–7609
|t ACS applied materials & interfaces
|v 15
|x 1944-8244
|y 2023
856 4 _ |u https://juser.fz-juelich.de/record/1005163/files/Manuscript_TC_GC.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1005163/files/acsami.2c21921.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005163
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128707
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-524
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5241
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Molecular and Cellular Information Processing
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2022
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2022
|d 2023-10-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21