001005166 001__ 1005166
001005166 005__ 20240226075354.0
001005166 0247_ $$2doi$$a10.1016/j.snb.2022.132250
001005166 0247_ $$2WOS$$aWOS:000861551700002
001005166 037__ $$aFZJ-2023-01354
001005166 082__ $$a620
001005166 1001_ $$0P:(DE-Juel1)169713$$aBeale, Christopher$$b0$$eCorresponding author
001005166 245__ $$aInkjet printed Ta2O5 on a flexible substrate for capacitive pH sensing at high ionic strength
001005166 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
001005166 3367_ $$2DRIVER$$aarticle
001005166 3367_ $$2DataCite$$aOutput Types/Journal article
001005166 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687168461_8962
001005166 3367_ $$2BibTeX$$aARTICLE
001005166 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005166 3367_ $$00$$2EndNote$$aJournal Article
001005166 520__ $$aMany pH sensors on the market today have specific limitations, such as the large and fragile construction of glass electrodes, or the complicated manufacturing processes of silicon-based devices including ion-sensitive field-effect transistors (ISFETs). Furthermore, most pH sensors require a stable reference electrode, which is difficult to miniaturize. In applications where the solution properties are largely understood, the use of an impedimetric sensor without a reference electrode may be sufficient, thereby simplifying the manufacturing of such sensors. In this work, inkjet printed and flash lamp annealed Ta2O5 on interdigitated electrodes, with an approximate sensor area of 4 mm × 4 mm, is investigated as a capacitive pH sensing layer in 0.5 M alkali chloride buffer solutions. By using the equivalent circuit of the insulator-electrolyte interface, the double layer capacitance is shown to decrease with an increase in pH within the range of pH 2 to pH 9, and agrees with prior results for anodic Ta2O5. When using the device as a sensor in both 0.5 M NaCl and 0.5 M LiCl aqueous solutions, the change in capacitance at 100 Hz is approximately − 110 nF/pH. Apart from pH sensing, these results may also prove informative in other applications, such as electrolytic capacitors, electrophysiology, and battery anodes in aqueous electrolyte. Moreover, the use of flexible, gold metallized polyethylene terephthalate (PET) foils as the sensor substrate potentially allows for large-scale production via roll-to-roll manufacturing, and further permits for use of the sensor in flexible applications such as goods packaging.
001005166 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001005166 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001005166 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
001005166 7001_ $$0P:(DE-HGF)0$$aAltana, Antonio$$b1
001005166 7001_ $$0P:(DE-Juel1)166550$$aHamacher, Stefanie$$b2
001005166 7001_ $$0P:(DE-Juel1)138367$$aYakushenko, Alexey$$b3
001005166 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b4
001005166 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b5
001005166 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b6$$eCorresponding author
001005166 773__ $$0PERI:(DE-600)1500731-5$$a10.1016/j.snb.2022.132250$$p132250$$tSensors and actuators <Lausanne> / B$$v369$$x0925-4005$$y2022
001005166 909CO $$ooai:juser.fz-juelich.de:1005166$$pVDB
001005166 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166550$$aForschungszentrum Jülich$$b2$$kFZJ
001005166 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b4$$kFZJ
001005166 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b6$$kFZJ
001005166 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001005166 9141_ $$y2023
001005166 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-05-04$$wger
001005166 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSOR ACTUAT B-CHEM : 2019$$d2021-05-04
001005166 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
001005166 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
001005166 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
001005166 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
001005166 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
001005166 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
001005166 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-05-04
001005166 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
001005166 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
001005166 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
001005166 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSENSOR ACTUAT B-CHEM : 2019$$d2021-05-04
001005166 920__ $$lyes
001005166 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001005166 980__ $$ajournal
001005166 980__ $$aVDB
001005166 980__ $$aI:(DE-Juel1)IBI-3-20200312
001005166 980__ $$aUNRESTRICTED