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container for all of our experience and has close connections 
to most cognitive processes. Motion perception (Ayhan & 
Ozbagci, 2020; Brown, 1995; Li et al., 2021; Yamamoto 
& Miura, 2016), motor control (Gavazzi et al., 2013; Wie-
ner, Zhou, Bader, & Joiner, 2019), language (Gordon et al., 

Introduction

The ubiquitous presence of time in diverse aspects of an 
organism’s life is a clear sign of the intertwined relationship 
between time and everyday action and perception. Time is a 
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Abstract
Time is an omnipresent aspect of almost everything we experience internally or in the external world. The experience of time 
occurs through such an extensive set of contextual factors that, after decades of research, a unified understanding of its neural 
substrates is still elusive. In this study, following the recent best-practice guidelines, we conducted a coordinate-based meta-
analysis of 95 carefully-selected neuroimaging papers of duration processing. We categorized the included papers into 14 
classes of temporal features according to six categorical dimensions. Then, using the activation likelihood estimation (ALE) 
technique we investigated the convergent activation patterns of each class with a cluster-level family-wise error correction at 
p < 0.05. The regions most consistently activated across the various timing contexts were the pre-SMA and bilateral insula, 
consistent with an embodied theory of timing in which abstract representations of duration are rooted in sensorimotor and 
interoceptive experience, respectively. Moreover, class-specific patterns of activation could be roughly divided according 
to whether participants were timing auditory sequential stimuli, which additionally activated the dorsal striatum and SMA-
proper, or visual single interval stimuli, which additionally activated the right middle frontal and inferior parietal cortices. We 
conclude that temporal cognition is so entangled with our everyday experience that timing stereotypically common combina-
tions of stimulus characteristics reactivates the sensorimotor systems with which they were first experienced.
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2015; Goswami, 2019; Kotz & Schwartze, 2010; Schirmer, 
2004), memory (Cumming et al., 2015; Matthews & Meck, 
2016; Polti, Martin, & van Wassenhove, 2018), causal infer-
ence (Woods et al., 2014), decision-making (Wittmann & 
Paulus, 2008), and even self-awareness (Droit-Volet & 
Dambrun, 2019; Wittmann, Jokic, & Pfeifer, 2019), all have 
multimodal interactions with our sense of time. Moreover, 
time mediates these cognitive processes on a wide range 
of timescales and sensory modalities. There is abundant 
evidence for partial dissociation of timing mechanisms as 
a function of context (for a review, please see Buhusi & 
Meck, 2005; Paton & Buonomano, 2018). Therefore, the 
influence of such a diverse array of contextual factors on 
duration processing impedes a unified understanding of this 
multifaceted phenomenon.

Despite extensive neuroimaging investigations into the 
neural correlates of temporal processing, major inconsisten-
cies remain to be addressed. Several integrational studies 
have tried to eliminate the neuroanatomical inconsistencies 
resulting from spurious findings of individual experiments 
that employed disparate experimental designs, various ana-
lytical procedures, and small sample sizes. Specifically, 
these studies adopted a conceptual approach by defining 
pivotal temporal categories that might disentangle the vari-
ability arising from diverse experimental paradigms and 
task parameters. In this regard, the categorical divisions of 
sub- vs. supra-second durations, perceptual vs. motor tasks, 
discrete vs. continuous (or sequential) stimulus presentation, 
internally-based vs. externally-cued timing, and implicit vs. 
explicit measures have been qualitatively and quantitatively 
demonstrated to be beneficial in reducing the extensive 
variance observed across the literature (Coull & Nobre, 
2008; Lewis & Miall, 2003b; Nani et al., 2019; Schwartze, 
Rothermich, & Kotz, 2012; Teghil et al., 2019; M. Wiener, P. 
Turkeltaub, & H. B. Coslett, 2010a; M. Wiener, P. E. Turkel-
taub, & H. B. Coslett, 2010b). Each integrational study has 
shed light on a part of the problem from one or two angles, 
but, given its ubiquity, timing should be treated as a multi-
dimensional process that depends on a more complex set 
of factors. As a result, despite providing valuable insights 
into the differential involvement of certain structures in dis-
tinct components or “classes” of a proposed category, no 
previous study has been able to unambiguously identify a 
unified timing system. For instance, previous reviews and 
meta-analyses (Ivry, 1996; Nani et al., 2019; Schwartze et 
al., 2012; Wiener et al., 2010a) have consistently related the 
cerebellum to the processing of sub-second durations. How-
ever, there is evidence that the cerebellum is also involved 
in certain timing tasks in the supra-second range (Beudel et 
al., 2008; Kawashima et al., 2000; Ohmae, Kunimatsu, & 
Tanaka, 2017; Petter, Lusk, Hesslow, & Meck, 2016), which 
cannot be accounted for by categorizations based on only 

one or two dimensions. Accordingly, we propose a multi-
factor classification system, incorporating an extensive set 
of categorical dimensions, which provides a deeper func-
tional understanding of each brain region. Furthermore, the 
resulting mesh of complementary factors facilitates subse-
quent inference about the role of each brain area in timing.

The current analysis aims to address the above limitation 
by investigating robust findings across the timing literature 
as a function of six separate dimensions. This multi-dimen-
sional investigation provides greater insight into the main 
taxonomies of time that have been proposed and, subse-
quently, identifies the temporal contexts most probably 
activating each brain region. Specifically, our categorical 
dimensions comprise factors related to the stimuli: stimulus 
duration, stimulus modality, and stimulus contiguity; as well 
as factors related to the task: sensorimotor processing, task 
goal, and stringency of the control task. Based on these six 
dimensions, we coded studies in the available literature into 
a total of 16 groups, including short, medium, and long dura-
tions; auditory, visual, and tactile sensory modalities; trajec-
tory, single-interval, and sequence stimuli; perceptual and 
motor tasks; quantification and prediction task goals; and 
studies that controlled for task structure, stimulus dynam-
ics or task difficulty, or for all three.. Unfortunately, the 
number of experiments in the tactile and trajectory classes 
was not adequate to be analyzed. It should be noted that the 
groups within a single dimension are mutually exclusive. 
For instance, the stimulus duration dimension comprises 
three distinct groups or “classes”: <500ms, 500-1500ms, 
> 1500ms. We employed Activation Likelihood Estimation 
(ALE), a well-established coordinate-based meta-analysis 
(CBMA) technique, to quantitatively consolidate neuroim-
aging findings within each group. Although the categorical 
dimensions of stimulus duration, sensorimotor processing, 
and stimulus contiguity have already been incorporated into 
several prior meta-analyses of the field (Lewis & Miall, 
2003b; Nani et al., 2019; Schwartze et al., 2012; Wiener et 
al., 2010a), we include these categories again, in order to 
provide a point of comparison with the existing literature. In 
addition, rather than the sub- versus supra-second division 
used previously, which may be rather artificial, we aimed to 
highlight the brain regions more specifically contributing to 
the processing of short, medium, and long durations, along a 
functional spectrum of highly automatic to highly controlled 
timing mechanisms. In order to do so, we chose the duration 
boundaries so that only a minimum number of experiments 
were classified as short or long. This choice of boundaries 
also parallels the proposed boundaries at which distinct tim-
ing mechanisms, namely automatic, cognitively controlled, 
and verbal counting strategies (Buonomano et al., 2009; 
Grondin, Ouellet, & Roussel, 2004; R. M. C. Spencer, Kar-
markar, & Ivry, 2009), come into play. Duration processing 
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studies have also already been categorized according to 
task goal (Schwartze et al., 2012; Wiener et al., 2010a, b). 
Here, instead of the implicit/ explicit terminology (Coull & 
Nobre, 2008), we use a less ambiguous definition to classify 
experiments more objectively according to whether par-
ticipants had to provide a quantitative measure of duration 
or whether they had to use temporal information to predict 
when an event would appear. Although some individual 
experiments (e.g., Araneda, Renier, Ebner-Karestinos, Dri-
cot, & De Volder, 2017; Shih, Kuo, Yeh, Tzeng, & Hsieh, 
2009) have examined the effect of stimulus modality on the 
neural correlates of duration processing, this categorical 
dimension is absent from integrational studies. This might 
be related to the implicit assumption that irrespective of the 
stimulus modality, the processing of duration information is 
subserved by dedicated modality-independent central struc-
tures. Finally, we incorporated a further dimension related 
to the control task to identify brain regions that were more 
reliably activated by timing processes rather than non-tem-
poral cognitive task demands. A detailed description of each 
dimension is available in Sect. 2.2 and in appendix 1 of the 
supplementary materials.

Our overall aim in the current study was to provide a more 
comprehensive functional dissection of timing experiments 
so as to better disentangle the pattern of neural activations 
associated with different contextual properties of duration 
processing. In this regard, following the methodological 
recommendations of the Preferred Reporting Items for Sys-
tematic reviews and Meta-Analyses (PRISMA; Page et al., 
2021) and best-practice recommendations for neuroimaging 
meta-analyses (Müller et al., 2018; Tahmasian et al., 2019) 
in obtaining papers and extracting the required informa-
tion, we organized the neuroimaging findings of 95 duration 
processing studies according to six categorical dimensions 
and conducted 14 ALE analyses to identify robust neural 
activations. This extensive set of analyses provided a multi-
dimensional perspective of the neural substrates of dura-
tion processing. By identifying anatomical commonalities 
and specificities across categories, we hoped this multi-
dimensional perspective would shed some light on the func-
tional contribution of each region. The multi-dimensional 
approach also provides an opportunity to compare how well 
each categorical dimension identifies neural structures that 
are specifically activated by its temporal characteristics and 
thus how effective it is as a taxonomic classification (Meck 
& Ivry, 2016; Paton & Buonomano, 2018). The focus of this 
article is on duration processing, and we do not cover any 
other forms of temporal processing, such as temporal order 
or simultaneity judgments.

Methods

Study Selection and Data Management

Following the recent best-practice guidelines for neuroim-
aging meta-analyses (Müller et al., 2018; Tahmasian et al., 
2019), we performed multiple ALE meta-analyses on neu-
roimaging findings of the duration processing literature. The 
search strategy and study selection were arranged accord-
ing to the PRISMA guidelines (Page et al., 2021). More 
detailed information on the implementation of PRISMA 
items is available in the appendix 1 and Tables 17 and 18 
of the supplementary materials. In order to collect neuroim-
aging studies of temporal processing, a search of PubMed, 
Scopus, and Web of Science, with no restrictions on the date 
of publication, was performed in April 2020 and enhanced 
with reference tracing of the retrieved articles. Figure 1 pro-
vides a flow diagram of the records in the study selection 
procedure. The detailed keyword string used to search the 
above databases can be found in Appendix 1 of the supple-
mentary materials.

After removing the duplicates, we obtained 1214 records 
from the database search and 39 additional papers from 
other sources (Fig. 1, supplementary Table 1). We included 
English peer-reviewed articles on healthy human adults that 
used functional neuroimaging techniques to investigate the 
neural correlates of timing. The following exclusion criteria 
were used to exclude inappropriate studies:

	● Case reports, letters to editors, and studies reporting no 
original data.

	● Comparison to rest or any other passive conditions.
	● Experiments with partial brain coverage, e.g., using 

region of interest (ROI), or small volume correction 
(SVC), as recommended previously (Müller et al., 2018; 
Tahmasian et al., 2019).

	● Experiments comparing the post- and pre-intervention 
conditions (e.g., drug administration, temporal illusion).

	● Experiments with less than seven participants.
	● Studies that did not report coordinates in the standard 

space.

Based on the selection criteria, two independent investiga-
tors (N.N. and N.J.) assessed the obtained papers in two 
steps: (1) screening all 1253 abstracts; (2) full-text assess-
ment of the 293 potential documents for eligibility. In this 
stage, all identified discrepancies were resolved according 
to the inclusion/exclusion criteria.

Three independent investigators (N. N., N. J., and J. C.) 
extracted and checked the required data, including the num-
ber of participants, reported peak coordinates in the stan-
dard spaces of Talairach (Talairach & Tournoux, 1988) or 
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activation foci (Turkeltaub et al., 2012). However, when a 
paper recruits a single group of subjects and reports either 
multiple task contrasts or multiple analyses of a single task, 
this assumption can no longer be considered valid. In such 
cases, since we preferred not to exclude any information, we 
followed the organizational approach proposed by Turkel-
taub et al. (2012). Accordingly, in order to make sure each 
group of participants contributed only once per analysis, in 
each analysis of a single characteristic, we merged experi-
ments that varied in any of the other characteristics. As an 
example, a study may have contained four experiments that 
varied in terms of stimulus duration (short/long) and sen-
sory modality (visual/auditory) dimensions, all of which 
were measured in a single group of participants. For the 
ALE analysis of experiments with short duration, sensory 
modality is a non-relevant dimension, and so its two classes 
(visual and auditory) should be merged so that both are uni-
fied in a group of short duration experiments.

MNI (Evans et al., 1993), as well as categorical dimensions 
of stimulus duration, stimulus modality, stimulus contiguity, 
sensorimotor processing, task goal, and control task strin-
gency. Any discrepancy that arose in this stage was then 
referred to J. C. to be judged.

The coordinates obtained in Talairach space were subse-
quently transformed into MNI space for analysis (Lancaster 
et al., 2007). As a technical distinction, it should be noted 
that throughout this paper, the word “study” refers to a sci-
entific publication, and the word “experiment” represents an 
individual contrast (e.g., timing task > control task, or dif-
ficult > easy timing task). Of note, two of the studies (Chen 
et al., 2008; Coull & Nobre, 1998) reported independent 
experiments from two sets of distinct participants. There-
fore, the 95 eligible papers included 97 independent experi-
ments. The importance of this distinction between the terms, 
“experiment” and “study”, is that ALE algorithm implicitly 
assumes the included studies as independent sources of 

Fig. 1  Flow diagram of study 
selection
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of two goals: (1) quantification or (2) prediction. The quan-
tification tasks required that duration was overtly estimated, 
usually as compared to other externally cued or internally 
represented durations: in these experiments, the task goal 
was primarily temporal in nature. By contrast, prediction 
tasks allowed the participant to make use of temporal infor-
mation or patterns to predict the onset of an upcoming event 
so as to respond to it more quickly or accurately: the task 
goal in these experiments was sensorimotor. Although we 
excluded experiments that compared timing tasks to a rest 
condition, there were still many studies that controlled pro-
cesses of non-interest rather poorly. We therefore applied 
further constraints to distinguish between these studies and 
those with more elegant designs that controlled for most 
of the non-timing processes. As a rule of thumb, we clas-
sified experiments according to the following criteria. The 
minimum level of control required studies to incorporate 
identical task structure and stimulus presentation across the 
compared conditions (in order to control for sensorimotor, 
mnemonic, attentional, and decisional aspects of the task). 
A higher level of control was achieved if, in addition to the 
similitude of the task structure and stimulus presentation, 
the compared conditions were matched in terms of either 
stimulus dynamics (to control for the working memory 
and sustained attention demands of processing duration) or 
task performance (to control for task difficulty). We define 
the highest level of control as simultaneously meeting all 
three conditions described above. With these definitions, we 
labeled studies conforming to the above-mentioned criteria 
as having a task control, a cognitive load control, or a strin-
gent control, respectively. Further explanation about the 
rationale behind the above classifications and their similari-
ties with previous categorizations is available in appendix 1 
in the supplementary materials.

Using the ALE technique, each of the above classes was 
then assessed for neuroanatomical convergence across the 
included experiments. To investigate any possible conver-
gence of findings across the entire timing field, we also con-
ducted an ALE analysis on all eligible studies, which were 
grouped together in an all-effects category. For studies with 
multiple experiments obtained from a single group of par-
ticipants, we followed the pooling approach suggested by 
Turkeltaub et al. (2012). A detailed explanation of the merg-
ing procedure is also available in the data extraction and 
management section of appendix 1.

Activation Likelihood Estimation (ALE)

In order to test for significant convergence across studies, 
we used the revised version of ALE, implemented in MAT-
LAB (Eickhoff et al., 2012). ALE is a standard statistical 
method for coordinate-based meta-analysis (CBMA) of 

In order to assess the quality of the included studies, we 
used a modified version of the 10-point checklist incorpo-
rated by previous neuroimaging meta-analyses (Z.-Q. Chen 
et al., 2015; Kamalian et al., 2022; Strakowski, DelBello, 
Adler, Cecil, & Sax, 2000; Su et al., 2021). Since, in addi-
tion to the demographic properties and imaging methodol-
ogy, the original checklist also concerns with the assignment 
of participants into clinical and control groups, we replaced 
two of the clinically-specific items with another one related 
to the minimum sample size so that the overall score would 
be limited to a maximum of 9. The quality assessment crite-
ria and score for each included study can be found in supple-
mentary Tables 19 and 1, respectively.

Data Classification Strategy

In the next step, for each of the six dimensions, we coded 
the selected experiments according to the following strat-
egy. We categorized stimulus duration into short, medium, 
and long duration classes, which comprised experiments in 
the range of < 500 ms, 500–1500 ms, and > 1500 ms, respec-
tively. According to the stimulus modality dimension, the 
included experiments used visual, auditory, or tactile stimu-
lation. Since there were only five experiments with tactile 
stimulation, which was far below the minimum thresh-
old for the ALE analysis (Eickhoff et al., 2016), this class 
was eliminated from the analyses. The stimulus contiguity 
dimension segregated the experiments according to whether 
stimuli were presented singly, in a sequence, or as a dynamic 
trajectory. The single-interval stimuli were separated from 
adjacent stimuli by a variable inter-stimulus interval and 
usually required a response before the next duration to-be-
estimated was presented. Duration discrimination, tempo-
ral reproduction, and cued reaction time tasks are instances 
of tasks with single-interval stimuli. On the other hand, 
sequenced stimuli were presented consecutively in sets of 
three or more, separated by fixed or temporally structured 
intervals. Rhythm reproduction and rhythmic monitoring 
are examples of tasks with sequenced stimuli. The trajectory 
stimuli, consisting of moving visual objects such as those 
presented in collision and time to contact judgment tasks, 
were discarded from the analysis due to an insufficient 
number of experiments (13 experiments) and, therefore, 
low reliability. Motor and perceptual timing tasks were uti-
lized as segregating factors for the sensorimotor categorical 
dimension. We labeled experiments as using motor timing 
tasks if the duration or onset of the motor response itself had 
to be accurately timed. On the other hand, if tasks required 
a choice response (e.g., yes/no or shorter/longer) that served 
merely to index the participant’s judgment of a timed stim-
ulus, we labeled experiments as using perceptual timing 
tasks. We also categorized temporal tasks according to one 
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the paracingulate gyrus (PCG), bilateral insula extending to 
the opercular region of the inferior frontal gyrus (IFG), ven-
trolateral part of the premotor cortex (PMCv), and left puta-
men, right middle frontal gyrus (MFG, BA 45, 46), right 
dorsal striatum (DST; including the putamen and parts of 
the caudate and globus pallidus), right inferior parietal lob-
ule (IPL), left inferior parietal sulcus (IPS), and left cerebel-
lum crus I (max p-value for cFWE < 0.0001; Fig. 2). More 
detailed information is available in appendix 2 and Table 2 
of the supplementary material.

Stimulus Duration Convergences

The left insular cortex was the only region conjointly acti-
vated by the three duration ranges. The pre-SMA, PCG, right 
insula, IFG, and PMCv were activated by both medium- and 
long-range durations. The bilateral putamen were found to 
be activated by both the short- and medium-range durations 
(although there was no overlap in the left-lateralized clus-
ters). Furthermore, the SMA-proper, right MFG, left IFG 
extending toward the PMCv, bilateral IPS, and left cerebel-
lar activations were found to be specific to the medium-
range durations and the right IPL cluster to the long-range 
durations. In all the duration-based analyses, the maximum 
p-value for family-wise error correction at cluster level was 
less than 0.0001. Figure 3a illustrates the axial view of the 
significant clusters obtained from the duration range analy-
ses on a single brain template. More detailed information 
on the peak coordinates of these clusters, their cluster sizes, 
anatomical labels, and the experiments and parameters con-
tributing to each cluster are available in appendix 2 and 
supplementary Tables 3, 4, and 5.

Stimulus Modality Convergences

The visual and auditory stimuli were found to conjointly 
activate the pre-SMA, PCG, left insula, and right oper-
cular IFG extending toward the PMCv. Additional right-
lateralized regions of activation were found in the MFG 
(BA 45, 46), insula, and IPS for visual stimuli, and in the 

neuroimaging data, identifying brain areas for which con-
vergence across the included imaging experiments is higher 
than would be expected if results were randomly distributed. 
For further information about the ALE analysis, please see 
appendix 1 in the supplementary materials.

In the current study, in order to correct for multiple com-
parisons of statistical tests and avoid false-positive find-
ings, we set the statistical significance threshold to p < 0.05 
family-wise error at the cluster-level (cFWE), with a clus-
ter forming threshold of p < 0.001, as suggested previously 
(Eickhoff et al., 2012). ALE analysis has been empirically 
proven to be able to control the influence of any individ-
ual experiment as long as a minimum of 17 experiments 
are included in the analysis (Eickhoff et al., 2016). Further 
information on sensitivity and power estimates of ALE 
analysis can be found in S. B. Eickhoff et al. (2016).

Results

The 95 included publications comprised a total of 121 exper-
iments and 1505 participants (supplementary Table 1). The 
anatomical labels of identified clusters were assigned based 
on the third version of the SPM Anatomy toolbox (Eick-
hoff et al., 2005). A more detailed description of the number 
of experiments included in each analysis and results of the 
conjunction analyses between classes of single dimensions 
can be found in appendix 2 of the supplementary materi-
als. Further details on the center coordinates of each cluster, 
cluster size, contributing articles, and the proportional con-
tribution from classes of each categorical dimension to the 
cluster are available in supplementary Tables 2–16.

Duration Processing Literature Convergences (All-
Effects Analysis)

The all-effect analysis, merging all findings from 97 inde-
pendent experiments, resulted in eight separate clusters. 
These were located in the supplementary motor area (SMA; 
including the pre-SMA and SMA-proper) extending towards 

Fig. 2  Regions of convergent activation across the entire timing literature (All-effects analysis) (p < 0.05, family-wise error correction at 
cluster level). L stands for left; and R for right
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IPL. On the other hand, activations specific to sequential 
stimuli were located in the SMA-proper, right IFG extend-
ing towards the PMCv, left IPS, bilateral dorsal striatum, 
the anterior portion of superior temporal gyrus (STG), left 
PMCv, and left cerebellum. Maximum p-value for family-
wise error at cluster level was less than 0.0001 in both 
analyses. Figure  3c illustrates common and differential 
activations of single-interval and sequential stimuli. More 
detailed information is available in the supplementary mate-
rials (appendix 2; Tables 8 and 9).

SMA-proper and bilateral dorsal striatum for auditory stim-
uli (Fig. 3b; appendix 2; supplementary Tables 6 and 7). In 
both visual and auditory analyses, the maximum p-value for 
family-wise error at cluster level was less than 0.0001.

Stimulus Contiguity Convergences

Activations in the pre-SMA extending toward the PCG, 
bilateral insula, and IFG were common to both single-
interval and sequential stimuli. The single-interval analysis 
yielded additional clusters in the right MFG (BA 45, 46) and 

Fig. 3  Regions of convergent activation across groups of experi-
ments classified according to the stimulus characteristics (p < 0.05, 
family-wise error correction at cluster level). Results of the sub-
analyses categorized according to (a) the stimulus duration dimension 
into the short (orange), medium (red), and long (green) range classes; 

(b) stimulus modality dimension into the visual (red) and auditory 
(green) modality classes; and (c) stimulus contiguity dimension into 
the single interval (red) and sequence (blue) classes. L stands for left; 
and R for right
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IPS, anterior portion of STG, and left cerebellum (Fig. 4a; 
appendix 2; supplementary Tables  10 and 11). Maximum 
p-value for family-wise error at cluster level was less than 
0.0001 in both analyses.

Sensorimotor Convergences

Both perceptual and motor timing studies commonly acti-
vated the pre-SMA extending toward the PCG and bilateral 
insula extending toward the IFG and right PMCv. Perceptual 
timing experiments additionally activated the SMA-proper, 
left PMCv, and bilateral dorsal striatum, while motor tim-
ing experiments additionally activated the right MFG, left 

Fig. 4  Regions of convergent activation across groups of experi-
ments classified according to the task characteristics (p < 0.05, 
family-wise error correction at cluster level). Results of the sub-
analyses categorized according to (a) the sensorimotor dimension into 
perceptual (red) and motor (green) classes; (b) task goal dimension 

into quantification (red) and prediction (green) classes; and (c) control 
task stringency dimension into task control (orange), cognitive load 
control (red); and stringent control (green) classes. L stands for left; 
and R for right
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across various timing contexts were the pre-SMA and 
bilateral insula extending into IFG, which thus constitute 
a core timing system; (2) the DST and SMA-proper were 
selectively activated by timing of auditory and sequential 
stimuli; and (3) the right frontoparietal network, including 
the MFG and IPL, were selectively activated by timing of 
visual and single-interval stimuli.

Timing in the Framework of Embodied Cognition

The overall results, summarized in Table  1, demonstrate 
that there is no central timing system for duration process-
ing that is consistently engaged whatever the experimental 
context. Nevertheless, consistent with previous works (Mer-
chant et al., 2013; Nani et al., 2019; Teghil et al., 2019; Wie-
ner et al., 2010a), we identified the widespread presence of 
a set of structures traditionally implicated in motor process-
ing, including the pre-SMA, SMA proper, premotor cortex, 
DST, and cerebellum, across various timing conditions. 
Strikingly, these regions were activated during both motor 
and perceptual timing tasks. Accordingly, irrespective of the 
sensorimotor dimension of the temporal task, the represen-
tation of duration during motor or perceptual timing relies 
on motor structures. Several lines of behavioral evidence 
(De Kock et al., 2021; Tomassini & Morrone, 2016; Wiener 
et al., 2019; Yokosaka, Kuroki, Nishida, & Watanabe, 2015) 
further support the essential contribution of motor processes 
to perceptual timing.

Within the broad timing network, the pre-SMA and left 
anterior insula were the two regions with the most robust 
pattern of significant convergence across most, though not 
all, circumstances. In addition, both of these regions were 
resistant to the most stringent experimental controls, pro-
viding additional support for their fundamental role in dura-
tion processing. The (pre-)SMA and insula represent key 
structures in motor control and interoception, respectively. 
Activation of these two regions can therefore be interpreted 
in terms of embodied models of cognition that highlight the 
significance of both bodily states and simulation-like pro-
cesses in the neural representation of cognitive processes 
(Barsalou, 2007). Indeed, several lines of research have pro-
posed that the representation of duration might be embodied 
either via the sensorimotor (Addyman et al., 2017; J. Coull, 
Vidal, & Burle, 2016; Fernandes & Garcia-Marques, 2019; 
Hugo Merchant & Yarrow, 2016; Schubotz, 2007) or intero-
ceptive (Craig, 2009; Fernandes & Garcia-Marques, 2019; 
Wittmann, 2009) systems.

In line with the central postulation of embodied theories 
of cognition regarding reenactment of sensory and motor 
representations by higher-order cognitive processes, the 
sensorimotor theory of timing posits that an abstract rep-
resentation of duration is rooted in the motor system’s 

Task goal Convergences

Analyses of experiments requiring quantification or predic-
tion of duration mutually converged in a pre-SMA cluster 
extending to the PCG and in the bilateral insula. Quantifi-
cation of duration additionally activated the SMA-proper, 
right-lateralized MFG and IPS, bilateral IFG extend-
ing toward PMCv, and bilateral DST, and left cerebellum 
(Fig.  4b). The only cluster of prediction-specific conver-
gence was in the left IPS (Fig. 4b; appendix 2; supplemen-
tary Tables 12 and 13). In both quantification and prediction 
analyses, maximum p-value for family-wise error at cluster 
level was less than 0.0001.

Control task Stringency Convergences

The three levels of control for non-timing processes were 
found to commonly converge in a very tiny area of the left 
opercular IFG. If control and timing tasks were matched 
simply in terms of basic sensorimotor characteristics, we 
found additional areas of convergent activation in the pre-
SMA extending toward the PCG, and in right-lateralized 
MFG, IFG, PMCv, and insula (Fig. 4c). If control and timing 
tasks were matched on either task performance or the use of 
dynamic/continuous stimuli, additional areas of activation 
were found in the pre-SMA/PCG, right MFG, IFG, PMCv, 
bilateral insula, DST, IPS, and left cerebellum (Fig.  4c). 
However, if control tasks were matched on all three criteria, 
we found additional areas of activation in the pre-SMA and 
left insula only (Fig. 4c). Maximum p-value for family-wise 
error at cluster level was less than 0.0001 in all the analyses. 
Further information is available in the supplementary mate-
rials (appendix 2 and Tables 14 and 15, and 16).

Discussion

We aimed to comprehensively explore the effect of experi-
mental constraints on the neural underpinnings of dura-
tion processing by conducting 14 separate subanalyses, 
organized according to six orthogonal categories. To date, 
this is the largest meta-analysis of the field, with 95 papers 
included. From these analyses, a set of brain structures 
including the pre-supplementary motor area (pre-SMA), 
insula, inferior frontal gyrus (IFG), inferior parietal lobule 
(IPL), dorsal striatum (DST), and cerebellum were identi-
fied to be activated in duration processing. Importantly, 
by identifying anatomical commonalities and specificities 
across categories, we found three major activation patterns 
as following: (1) consistent with many previous reviews and 
meta-analyses (Nani et al., 2019; Teghil et al., 2019; Wie-
ner et al., 2010a) the neural structures most often activated 
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SMA (Deen et al., 2011) and IFG (Cai et al., 2014; Cerliani 
et al., 2012; Deen et al., 2011), and receiving propriocep-
tive-kinesthetic afferents from the peripheral nervous sys-
tem, further illustrates that the classic interoceptive notion 
of temporal cognition could be expanded to include motor 
feelings associated with sensorimotor experiences more 
explicitly.

Also in accordance with the framework of embodied 
cognition, it has been suggested that temporal information 
in different timescales is processed by systems consistently 
implicated in behavioral functions operating within that time 
range (Buhusi & Meck, 2005; Murai & Yotsumoto, 2016). 
Our meta-analysis revealed that processing of short dura-
tions (< 500ms), commonly needed for motor coordination 
and speech generation, is primarily mediated by the DST, a 
key component of the motor system (Lewis & Miall, 2003a). 
By contrast, we found that processing of longer durations of 
up to a few seconds, integral for behaviors like foraging and 
decision-making, was mediated by higher-level cognitive 
systems, including the right-lateralized prefrontal and pari-
etal cortical structures that subserve attention and working 
memory. It should be noted that in spite of the substantial 
dissociation between the neural substrates of short and long 
durations, imaging (Murai & Yotsumoto, 2016) and psycho-
physical (Lewis & Miall, 2009) findings support the idea 
of a continuum around the peri-second range, where both 
sets of structures would be recruited. Our results from the 
medium-range duration stimuli confirm this hypothesis.

Embodied Timing as a Function of Sensory 
Embedding

Time as an entity, perceived through the dynamics of the 
internal and external world, does not rely on one particular 
sensory modality. A common view is that the duration of 
visual events will be coded in the visual cortex, or auditory 
events in the auditory cortex, before this information is then 
transferred to higher-order processing regions as an abstract 
amodal representation (Coull & Droit-Volet, 2018; Konono-
wicz & van Rijn, 2014; Merchant et al., 2013; Protopapa et 
al., 2019). Similarly, an embodied notion of time implies 
that intrinsic representation relies on simulations of tem-
poral processing from everyday experience, which would 
entail representations being embedded within the specific 
sensory modality within which they were experienced. 
Indeed, a central principle of embodiment theories per-
tains to the reenactment of primitive perceptual, motor, or 
interoceptive states as a brain mechanism for representation 
and modulation of abstract information (Barsalou, 2007; 
Niedenthal, Barsalou, Winkielman, Krauth-Gruber, & Ric, 
2005). In this respect, the processing of temporal informa-
tion in different modalities would exploit modality-specific 

capacity for executing precisely timed coordinated motor 
programs (Balasubramaniam et al., 2021; Coull & Droit-
Volet, 2018; Fernandes & Garcia-Marques, 2019; Merchant 
& Yarrow, 2016; Patel & Iversen, 2014). It has also been 
suggested that the pre-SMA, which is involved in action 
inhibition, might have become co-opted to represent time 
because it is recruited whenever a voluntary action has to 
be delayed, which is essentially the inhibition of a response 
in the temporal dimension (Coull et al., 2016; Kononowicz 
& van Rijn, 2015; Merchant & Yarrow, 2016). Furthermore, 
the motor system’s capacity for internal forward modeling, 
which relies on the sensorimotor representation of action 
established through unsupervised learning processes, might 
provide the support for our ability to make temporal pre-
dictions (Balasubramaniam et al., 2021; Schubotz, 2007). 
The (pre-)SMA, which plays a key role in the coordination 
and integration of action, may serve as the starting point of 
a simulation process by providing the input (the so-called 
corollary discharge or efference copy) to the forward model 
(Schubotz, 2007) or, alternatively, activity of its modality-
independent neuronal subpopulations might provide top-
down predictive signals to sensory and association areas 
(Merchant & Yarrow, 2016).

According to the interoceptive notion of temporal pro-
cessing, our experience of time is intimately connected 
with the signaling of bodily states and related emotions 
(Wittmann, 2009). Our results reveal an almost ubiquitous 
contribution of the insula in duration processing (Table 1), 
and so are consistent with Craig’s proposed model of tim-
ing (2009) that posits the insula as a neural substrate for 
awareness across time. According to this model, the inte-
gration of primary interoceptive signals with the salient 
features of the sensory environment, and then with the 
motivational, hedonic, social, and cognitive inputs in the 
insula, along a posterior-to-mid-to-anterior axis, forms the 
basis for a unified meta-representation of the sentient self 
at the immediate moment of time. The serial accumulation 
of these endogenous time units is hypothesized to provide 
a potential basis for the subjective experience of time. In 
a recent study, Fernandes and Garcia-Marques (2019) 
recorded electromyographic (EMG) signals from two facial 
muscles during a temporal judgment task and found correla-
tions between subjective duration and EMG gradients of the 
corrugator-supercilii muscles. The authors speculated that 
the accumulative proprioceptive-kinesthetic signals elic-
ited from this muscle served as a source of internal bodily 
feeling that led to a sense of self-awareness over time. In 
addition, they proposed that this spontaneous motor output 
reflected the contribution of motor control structures in per-
ceptual temporal processing. In addition, neuroanatomical 
evidence representing insular cortex as a converging point, 
having functional and structural connections with the (pre-)
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Timing of Auditory and Sequential Stimuli

The auditory and sequential analyses were found to yield 
similar patterns of convergent activation in the insula, IFG 
and adjacent ventrolateral PMC, DST, and SMA (including 
both the pre-SMA and SMA-proper). Humans’ superior tim-
ing capacity in the auditory modality is thought to origi-
nate from the privileged link between the auditory system 
and motor control regions, namely the (pre-)SMA, PMCv, 
posterior IFG, and DST (Comstock et al., 2018; Jancke, 
Loose, Lutz, Specht, & Shah, 2000; H. Merchant & Honing, 
2013; Patel, Iversen, Chen, & Repp, 2005). Strong auditory-
motor coupling results in enhanced entrainment of motor 
neurons to the dynamics of sensory activation and, subse-
quently, more stable internal models of temporal informa-
tion (Balasubramaniam et al., 2021; Large & Snyder, 2009; 
Morillon & Schroeder, 2015; Proksch, Comstock, Médé, 
Pabst, & Balasubramaniam, 2020; Ross, Iversen, & Bala-
subramaniam, 2016). A stronger internal model produces a 
more accurate simulation of the temporal dynamics of the 
environment and subsequently more accurate top-down 
predictions and higher temporal performance. Following an 
embodied approach to time, the motor system establishes 
and tunes internal models through its active interaction with 
the environment. Although motor training of isolated actions 
can define task-relevant neural manifolds and enhance 
related sensorimotor representations, repetitive training on 
a sequence of recurring actions merges individual actions 
into a rhythmic pattern with greater dynamic stability (Bala-
subramaniam et al., 2021; Sakai, Hikosaka, & Nakamura, 
2004; Zhang & Sternad, 2019). The most stable actions 
in the human motor repertoire, such as walking, dancing, 
and articulation, occur in a structured rhythmic sequence. 
Therefore, it is reasonable to conceive that internal models 
of the rhythmic structure of events are represented within 
motor substrates specialized for locomotive behaviors. Our 
findings concerning the selective activation of the DST and 
SMA-proper for auditory–sequential timing tasks provide 
support for this theoretical framework. Further support 
comes from the rehabilitation literature, where rhythmic 
auditory stimulation has proven to be an effective interven-
tion program for behaviors of sequential nature, such as gait 
(for a review, see Pereira et al., 2019) and language (Fujii & 
Wan, 2014; Habib, 2021; Kotz & Gunter, 2015).

Language and music are two major sources of rhythmic 
auditory temporal information in our everyday life. It has 
been proposed that sensorimotor models of temporal struc-
tures “would call upon the vocal and articulatory system 
because rhythmic information is at the heart of vocal and 
articulatory production” (Schubotz, 2007). Behavioral evi-
dence for the proposed relationship between rhythm process-
ing, articulation and locomotion comes from the timescale 

systems recruited by simulations of consolidated experi-
ences of time in those modalities. Although we did not find 
modality-specific activity in low-level sensory regions due 
to the subtractive approach of most experiments (which 
would subtract out sensory activations common to both the 
timing and control tasks), a modality-specific system is not 
necessarily confined to sensory structures. The modality-
specific nature of timing-related activations might instead 
manifest itself in distinct networks of higher-order regions 
(parietal, motor, or frontal cortices), depending on the dif-
ferent ways in which visual or auditory information is usu-
ally experienced. In the current paper, one of our novel 
tenets is that depending on the sensory system within which 
the temporal task is embedded, the internalized model of 
the events’ temporal characteristics will be underpinned by 
circuits specialized for either locomotive or gestural motor 
control (Todd, 1999). The gestural form can be described 
as a single continuous movement, while the locomotive 
form is associated with sequences of discrete movements 
arranged in a metrical structure.

Adhering to an embodied framework, we discuss our 
results according to stereotypical combinations of stimu-
lus characteristics in everyday life, where auditory tempo-
ral information is typically sequential, and visual temporal 
information is often continuous. Indeed, it is easier to syn-
chronize to an auditory input if it comprises a sequence of 
discrete sounds, but to visual stimuli if they are unitary mov-
ing trajectories (Hove et al., 2013; Silva & Castro, 2016). In 
the auditory–sequential domain, speech and music represent 
two natural sources of stereotypical temporal information 
that, due to their rich temporal dynamics and ecological sig-
nificance, play a pivotal role in shaping cognition. These 
sequential auditory events probably rely on locomotor-
like internal models, specialized for language processing. 
Similarly, there is evidence that the temporal processing of 
continuous visual events is supported by the mechanisms 
governing visuomotor processing (Ayhan & Ozbagci, 2020; 
Gavazzi et al., 2013; Orgs, Kirsch, & Haggard, 2013). This 
dichotomy is further illustrated by common combinations 
of stimulus structure and modality in the papers included in 
our meta-analysis, which resulted in a substantial overlap 
between the experiments included in the stimulus modal-
ity and contiguity classes and the resultant findings of these 
analyses (Fig. 3b and c). In experimental terms, while the 
visual modality is more often utilized to investigate the tem-
poral processing of single interval stimuli (e.g., in duration 
discrimination), the study of beat-based timing is usually 
conducted on auditory stimuli (e.g., in rhythm monitoring 
tasks). We, therefore, discuss our results in terms of two 
broader groups of auditory beat-based and visual interval-
based timing.
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that rely, respectively, on the cortico-basal ganglia-thalamo-
cortical systems (CBGT) and the dorsal stream. Interest-
ingly, the proposed circuitry for the hierarchical control of 
goal-directed action and of hierarchical internal models cor-
responds to the neural substrates of humans’ advanced beat 
processing capacity, advocated by the Gradual Audiomotor 
Evolution (GAE; H. Merchant & Honing, 2013) and Action 
Simulation for Auditory Prediction (Patel & Iversen, 2014) 
hypotheses, respectively.

The nuclei in the dorsal striatum form another key com-
ponent of the motor system. They have been implicated 
in the processing of concatenated sequences in both beat-
based timing (Grahn, 2009; Grahn & Rowe, 2009; H. Mer-
chant, Grahn, Trainor, Rohrmeier, & Fitch, 2015; Teki, 
Grube, Kumar, & Griffiths, 2011) and chunking (Dahms et 
al., 2020; Graybiel, 1998; Wymbs, Bassett, Mucha, Porter, 
& Grafton, 2012). Processing of linguistic, musical, and 
motor sequences (Gobet et al., 2001) is made more efficient 
by automatic chunking, which has been demonstrated to be 
a powerful perceptual mechanism for overcoming resource 
limitations. Importantly, there is evidence that temporal 
structure contributes to the definition of chunk boundaries 
(Dowling, 1973; Gilbert, Boucher, & Jemel, 2015; Sny-
der, 2008). In addition, the internal coherence of locomo-
tive behaviors, provided by either chunked (Li et al., 2013; 
Miller, 1956) or metrical (Essens & Povel, 1985; Geiser, 
Notter, & Gabrieli, 2012; Teki et al., 2011) structure, is found 
to benefit representational stability of dependent items. It 
is therefore conceivable that comparable mechanisms may 
be implicated in binding individual items together in both 
chunked and metrical structures. This notion of DST’s func-
tion is consistent with the GAE (Merchant & Honing, 2013) 
and the most recent account of the ASAP (Cannon & Patel, 
2021) hypotheses. The interplay between the SMA-proper 
and dorsal striatum is proposed to provide the neural basis 
for the representation of beat-based rhythms, such that firing 
rate dynamics of SMA neuronal populations encode the beat 
interval, and the DST selects the subpopulation appropriate 
for encoding the next interval (Cannon & Patel, 2021). In 
other words, this model hypothesizes the DST as a sequenc-
ing component that chunks the learned succession of inter-
vals into a rhythmic structure. In support of this proposal, 
our findings, presented in supplementary Tables 7, 10, 12, 
and 15, identified sequential stimuli as the major contribut-
ing factor to the convergent activation of the DST across 
analyses of auditory stimuli, and of perceptual, quantifi-
cation, and stringently controlled tasks. Furthermore, the 
functional collaboration of the SMA-proper and DST is 
supported by significant convergence in SMA-proper vox-
els in precisely the same analyses that yielded convergent 
DST activation. The SMA-proper involvement in auditory 
beat-based timing supports the functional dissociation of 

that is mutually shared by the most accurately perceived 
and synchronized beats, the syllable rate of speech, and the 
comfortable walking pace (Daikoku et al., 2020; MacDou-
gall & Moore, 2005; Rajendran, Teki, & Schnupp, 2018; 
Todd, Cousins, & Lee, 2007; Zalta, Petkoski, & Morillon, 
2020). The abundance of clinical findings demonstrat-
ing temporal deficits in language-related disorders (for a 
review, see Ladányi, Persici, Fiveash, Tillmann, & Gordon, 
2020; Habib, 2021), such as dyslexia (e.g., Boll-Avetisyan, 
Bhatara, & Höhle, 2020), specific language impairment 
(e.g., Cumming et al., 2015), and aphasia (e.g., Stefaniak, 
Lambon Ralph, De Dios Perez, Griffiths, & Grube, 2021) 
also support the underlying significance of language for 
timing. The ventrolateral PMC (PMCv), along with its ante-
rior neighbor, the opercular region of IFG, is a central com-
ponent of the articulatory system, controlling the “highly 
overlearned, frequently used, and flexibly recombinable 
articulatory and manual sequences” (Fiebach & Schubotz, 
2006). Therefore, it is conceivable that ventrolateral PMC, 
with its role in audio-vocal transformation, is involved in 
the motor representation of the temporal structure of events 
(Chen et al., 2009; Fiebach & Schubotz, 2006; Zatorre, 
Chen, & Penhune, 2007). While our findings concerning 
the right-lateralized activation of the PMCv stands at odds 
with the left-lateralization of audio-vocal transformations in 
the language literature, it is consistent with the frequently 
documented activation of this region in the music literature 
(Brown et al., 2006; Cheung, Meyer, Friederici, & Koelsch, 
2018; Musso et al., 2015).

The posterior IFG (Broca’s area) is associated with the 
construction of more complex linguistic and musical struc-
tures from their subordinate building blocks (Brown et al., 
2006; Cheung et al., 2018; Flinker et al., 2015; Friederici, 
2006). The contribution of posterior IFG to the construc-
tion of higher-order temporal sequences is demonstrated to 
occur beyond the linguistic and musical domains (Asano & 
Boeckx, 2015; Fadiga, Craighero, & D’Ausilio, 2009; Fie-
bach & Schubotz, 2006; Fitch & Martins, 2014; Jeon, 2014; 
Musso et al., 2015). Various sources of evidence (Clerget 
et al., 2012; Koechlin & Jubault, 2006; Stout, Toth, Schick, 
& Chaminade, 2008; Uddén, Ingvar, Hagoort, & Petersson, 
2017; Wang et al., 2019) suggest the IFG is a crucial compo-
nent of the shared substrates (Patel, 2011) for the processing 
of hierarchical structures in general. Therefore, we conclude 
that the superior portion of the right IFG cluster, specifi-
cally associated with the sequence stimuli, may be related 
to the construction of temporal sequences from individual 
intervals. According to a recent proposal by Asano (2021), 
the ability to build a domain-general hierarchical structure 
depends upon the hierarchical control of goal-directed action 
(Badre & Nee, 2018) and hierarchical internal models (Fie-
bach & Schubotz, 2006; Wolpert, Doya, & Kawato, 2003) 
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greater congruence between an individual’s internal model 
of action and visual kinematics leads to better timing perfor-
mance (Gavazzi et al., 2013). Therefore, just as in the audi-
tory modality, temporal processing in the visual modality 
relies on sensorimotor transformation of real-world expe-
rience. Accordingly, our analysis yielded clusters of con-
vergent activation in ventrolateral PMC, adjacent IFC, and 
pre-SMA for the timing of visual stimuli, which substan-
tially overlapped with the results of the auditory analysis.

By contrast, we found selective activation of right-later-
alized IPL and middle frontal gyrus (MFG) for visual, but 
not auditory, stimuli. Moreover, this activation pattern was 
found for both visual and single interval timing tasks. Cyto-
architectonically, the identified MFG cluster primarily cor-
responds to the anterior superior portion of area 45b and an 
inferior posterior portion of area 46. Studies in non-human 
primates have demonstrated that area 45b receives projec-
tions from the visual association cortex (Frey et al., 2014). 
Area 45b is also connected to both the frontal eye field 
(FEF) and supplementary eye field (SEF), and is therefore 
affiliated with the frontal oculomotor system (Gerbella et 
al., 2007, 2010). In tandem with the caudal portion of area 
46vc (possibly corresponding to the identified portion of the 
BA 46 in our study), this frontal network cooperates with 
the inferior parietal cortex to orient feature-based spatial 
attention and take part in oculomotor control (Borra & Lup-
pino, 2019; Gerbella et al., 2010; Gerbella, Borra, Tonelli, 
Rozzi, & Luppino, 2013; Premereur, Janssen, & Vanduffel, 
2015). The differential involvement of the right MFG-IPL 
network for visual stimuli and the DST for auditory stimuli 
reveals distinct control mechanisms for modality-specific 
timing. While auditory beat-based timing relies on sub-
cortical structures that subserve automatic repetitive motor 
processes like walking (Hausdorff et al., 1998), visual inter-
val-based timing engages the frontoparietal attention net-
work (Lewis & Miall, 2003b) that is involved in gaze and 
manual control (Battaglia-Mayer et al., 2001; Hadjidimitra-
kis, Bakola, Wong, & Hagan, 2019). The greater reliance of 
visual timing on cognitive resources is compatible with the 
nature of gestural visuomotor processes. In contrast to the 
internal models of locomotive movements that, once estab-
lished, remain relatively constant, internal models of visu-
ally guided movements, such as manual reach, depend on 
sustained attention to visual feedback (Buneo & Andersen, 
2006; Zhao & Warren, 2015). Furthermore, the recruitment 
of the right MFG–IPL network in the relatively demand-
ing processing of visual timing is consistent with previous 
work (Lewis & Miall, 2006; Joaquim Radua, Pozo, Gómez, 
Guillen-Grima, & Ortuño, 2014; Rubia & Smith, 2004), 
indicating shared neural structures between time percep-
tion and executive functions. Hence, by contrast to the 
auditory modality, the lower reliance of visual timing on 

the pre-SMA and SMA-proper (Coull et al., 2016; Schwar-
tze et al., 2012) along a rostrocaudal axis of automaticity, 
with higher degrees of automaticity being localized more 
caudally. Taken together with the privileged access of the 
auditory system to the motor cortico-basal ganglia-thalamo-
cortical (mCBGT) circuit (Merchant & Honing, 2013), our 
results underscore the facilitatory significance of the DST 
for beat-based timing. With regard to the considerable con-
tribution of this region to the beat-based processing of time, 
we come to the conclusion that the DST, as a key substrate 
for associative learning (Liljeholm & O’Doherty, 2012; 
Penhune & Steele, 2012), probably provides a subcortical 
bypass for more straightforward representation of chains 
and hierarchies of learned interval sequences in closed-loop 
circuits.

By contrast to the DST that mediates relative or beat-
based timing of sequences of learned intervals, the cerebel-
lum is found to be more activated to undiscovered or weakly 
regular rhythmic structures (Lutz et al., 2000; Sakai et al., 
1999; Teki et al., 2011), or in the early stages of learning 
when absolute intervals play a more principal role (Jouen 
et al., 2013; R. M. Spencer, Zelaznik, Diedrichsen, & Ivry, 
2003; Teki et al., 2011). Indeed, the cerebellum is known 
for its involvement in the feedback-based formation and 
fine-tuning of the internal model of events (Dahms et al., 
2020; Ishikawa, Tomatsu, Izawa, & Kakei, 2016; Penhune 
& Steele, 2012; Shadmehr & Krakauer, 2008). Its activation 
by sequential stimulus presentation, particularly in motor 
timing tasks, is consistent with its role in forward modelling 
and indicates a role in the adaptive adjustment of behav-
ior based on the temporal correspondence between sensory 
input and motor output.

Timing of Visual and Single Interval Stimuli

The traditional notion of a general auditory advantage in 
temporal processing has been challenged by findings dem-
onstrating that tapping to optimized moving visual stimuli, 
such as bouncing balls with realistic kinematics, is almost as 
good as tapping to auditory metronomes (Gan et al., 2015; 
Gu, Huang, & Wu, 2020; Hove et al., 2013; Silva & Cas-
tro, 2016). Temporal performance is facilitated not only by 
the visuospatial characteristics of the stimulus but also by 
its sensorimotor compatibility with the human motor reper-
toire (Allingham et al., 2021; Gavazzi et al., 2013). Visual 
interval timing might therefore be rooted in visuomotor ges-
tural behaviors, just as auditory beat-based timing relies on 
motor control structures implicated in audiomotor locomo-
tive behaviors, such as speaking. This conjecture complies 
with findings demonstrating that internal models of gestural 
movements, such as manual reach, help mediate the per-
ception of visual intervals (Addyman et al., 2017), and that 
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be substantially stimulus-driven. Accordingly, as discussed 
in Sect. 4.2.2, the right MFG–IPL network, obtained from 
the quantification analysis, could be representative of such 
stimulus-driven attention to duration. Hence, the observed 
dissimilarity in IPL lateralization for prediction versus 
quantification can be attributed to the dissociation between 
model-based and stimulus-driven processing of duration, 
respectively.

Limitations and Future Directions

Although the ALE coordinate-based meta-analysis was 
originally developed to disentangle structural rather than 
functional ambiguities in the neuroimaging literature, the 
comparative application of this technique to groups of 
experiments organized on the basis of functional attributes 
narrows down the potential role of the identified regions. 
Accordingly, we postulate that brain structures identified to 
be exclusively connected with a categorical property should 
be functionally involved in the processing of that specific 
attribute. For instance, the exclusive contribution of sequen-
tial stimuli to the convergent activity in the dorsal striatum is 
indicative of its functional significance for beat-based tim-
ing. In contrast, the ALE analysis of functionally-separated 
studies do not allow to speculate on the possible functional 
roles of brain structures that respond quasi-ubiquitously 
across various contexts, such as the pre-SMA or insula.

Since the incorporated quality assessment tool was origi-
nally developed for clinical studies, its items do not per-
fectly match to our neuropsychological study. Therefore, 
the obtained score for each included study might not be the 
most relevant yardstick for assessing its quality. In addition 
to the quality of the included studies, their methodologi-
cal heterogeneity due to differences in imaging techniques, 
scanner types, and statistical analyses may have influenced 
the results we obtained. However, we could not investigate 
those methodological impacts because the number of stud-
ies in some subcategories (e.g. PET studies) fell below the 
minimum number required to control the excessive contri-
bution of individual experiments (Eickhoff et al., 2016). 
In addition, despite the conservative approach of the ALE 
technique and our strict compliance with CBMA meta-
analysis guidelines (Müller et al., 2018; Tahmasian et al., 
2019), the question of whether the obtained results depend 
on the meta-analysis technique we used requires future 
studies to compare our results with that of other available 
CBMA tecniques, such as (ES-)SDM (Radua et al., 2012), 
KDA (Wager et al., 2007), and GPR (Salimi-Khorshidi et 
al., 2009).

The uneven distribution of experiments with other stim-
ulus or task characteristics among classes of a single cat-
egorical dimension is a major issue for comparison between 

motor substrates could be taken to indicate lower degrees 
of embodiment in visual temporal processing and a greater 
need for cognitive control.

A Quantification vs. Prediction Dissociation of 
Timing

Our results from the quantification and prediction analyses 
indicate that the striatal or right-lateralized fronto-parietal 
activations often reported in studies of duration estima-
tion are observed only when the duration has to be explic-
itly evaluated and quantified (e.g., pressing a button for a 
prespecified time or making a shorter/longer judgment). 
In addition, a comparison between the analyses of the two 
task goals yields a lateralization pattern with respect to IPL, 
where the left- and right-sided clusters correspond respec-
tively to the prediction and quantification of time. The 
observed dissociation between the left and right IPL clus-
ters is particularly consistent with brain stimulation findings 
demonstrating the causal significance of left IPL in temporal 
prediction of rhythms (Ross et al., 2018) and of right IPL 
in the temporal quantification of duration in discrimination 
tasks (Bueti et al., 2008).

This IPL lateralization pattern is also consistent with 
what we obtained from the stimulus contiguity analyses. 
Similar to the prediction and quantification analyses, the 
sequence and single interval analyses yielded left- and 
right-lateralized parietal activation, respectively. Learned 
rhythmic sequences induce predictions about the onset of 
an upcoming stimulus. Forming a temporal prediction about 
a forthcoming event in an ongoing sequence relies on the 
internal model of the sequence (Schubotz, 2007). An inter-
nal model is a sensorimotor representation of the events’ 
structure. The left IPL, as an interface receiving both feed-
forward motor and feedback sensory signals, is known to 
be recruited for linking sensory and motor systems through 
the dorsal stream (Rauschecker, 2011, 2018; Warren, Wise, 
& Warren, 2005). The dorsal stream is implicated in time-
efficient sensory-motor integration, a phenomenon under-
lying the capacity for real-time internal representation of 
events’ structure (Bornkessel-Schlesewsky & Schlesewsky, 
2013; Rauschecker, 2011, 2018) and predictive coding 
(Friston & Kiebel, 2009; Proksch et al., 2020; Zatorre et 
al., 2007). Its role in the transmission of top-down predic-
tive signals to the sensory system, possibly through the opti-
mized allocation of attentional resources to the anticipated 
moment in time (Bolger et al., 2014; Coull & Nobre, 1998; 
Morillon & Baillet, 2017), results in ‘Active Sensing’ and 
facilitates the processing of upcoming stimulus (Morillon & 
Schroeder, 2015; Schroeder, Wilson, Radman, Scharfman, 
& Lakatos, 2010). By contrast, the quantification of novel 
temporal information in single interval experiments would 
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time” (Meck & Ivry, 2016; Paton & Buonomano, 2018), but 
it is worth testing if different timing tasks that share a com-
bination of temporal characteristics just like their stereotyp-
ical groupings would engage common neural mechanisms 
and circuits. We hope that insights from the processing 
of time in real-life contexts will encourage researchers to 
progress towards timing experiments with higher ecologi-
cal validity that investigate how the interplay of multiple 
temporal characteristics affects neural substrates of timing.

Conclusion

In this multi-dimensional meta-analysis, anatomical com-
monalities across categories reveal an almost ubiquitous 
activation of the pre-SMA and bilateral insula extend-
ing into the IFG. Anatomical specificities indicate that the 
auditory–sequential and visual–single interval stimuli, as 
the key segregating factors, recruit the DST–SMA-proper 
and right MFG-IPL networks, respectively. While activa-
tion of the pre-SMA and bilateral insula are proposed to be 
associated with the sensorimotor and interoceptive notions 
of embodied temporal cognition, our findings from the 
context-dependent activations are also consistent with an 
embodied framework according to which an abstract repre-
sentation of time is grounded in the sensorimotor processes 
that subserve actions with a comparable temporal profile. 
In particular, the DST and SMA-proper are known to be 
recruited for the execution of stabilized locomotive behav-
iors, while the MFG–IPL network is proposed to be associ-
ated with gestural behaviors. Accordingly, we come to the 
conclusion that the embodied nature of temporal processes 
more strongly implies an intrinsic rather than a dedicated 
neural implementation of timing processes.
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the analyses and any consequent functional inferences. For 
instance, a direct comparison between the perceptual and 
motor analyses yielded convergent activation in the DST 
that could have been interpreted as a significant role for the 
DST in perceptual, but not motor, timing processes. How-
ever, a closer look at the contribution information in sup-
plementary Table 10 reveals a predominant contribution of 
sequential stimuli from rhythm perception tasks to the right 
DST cluster. On the other hand, a much lower (possibly 
inadequate) number of sequential stimuli from motor exper-
iments were available for inclusion in the analysis, possibly 
explaining the preferential activation of DST by perceptual 
tasks. Another instance of disproportionate distribution of 
experiments comes from the duration range analyses. Since 
experiments with a medium-range (500–1500 ms) stimulus 
duration comprise the majority of timing experiments, it 
has considerable neuroanatomical overlap with the results 
of the all-effects analysis. By contrast, the relative sparsity 
of results obtained from the analyses of short (< 500 ms) 
and long (> 500 ms) duration range stimuli cannot conclu-
sively be conceived to represent more focal neuroanatomi-
cal substrates but, rather, might index lower convergence 
simply due to the small number of included experiments. A 
similar conclusion can be drawn for the lack of cerebellar 
convergent activation in the single-interval analysis. Con-
sidering the modular organization of internal models in the 
cerebellum (Imamizu & Kawato, 2012; Imamizu, Kuroda, 
Miyauchi, Yoshioka, & Kawato, 2003), the absence of this 
region could have resulted from task-dependent (rather than 
contiguity-related) spatial heterogeneity of the reported cer-
ebellar data.

In addition to the auditory beat-based and visual inter-
val-based timing, humans are, of course, also capable of 
processing temporal information within visual sequences 
and auditory single-intervals. However, we speculate that 
the brain mechanisms for processing these rarer stimu-
lus combinations are not as efficient as their stereotypical 
counterparts that have higher ecological relevance. We also 
conjecture that these atypical combinations activate a mix-
ture of the neural correlates of each stereotypical pair. We 
acknowledge it would be advantageous to narrow the poten-
tial functional significance of our neuroanatomical results 
by expanding the auditory–sequential and visual–single-
interval segmentation into further dimensions, such as inter-
val duration. While such further sub-divisions could provide 
a more precise picture of the brain correlates of temporal 
processing, the unbalanced distribution of experiments and 
the small sample size of the resulting subsections would, in 
practice, restrict further analyses.

Considering the above-mentioned methodological limi-
tations, we cannot definitely argue that the embodiment 
framework provides the key to an ultimate “taxonomy of 
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