001005203 001__ 1005203
001005203 005__ 20240313095025.0
001005203 0247_ $$2doi$$a10.5281/ZENODO.7648959
001005203 037__ $$aFZJ-2023-01370
001005203 1001_ $$0P:(DE-Juel1)176305$$aLinssen, Charl$$b0$$eCorresponding author$$ufzj
001005203 245__ $$aNESTML 5.2.0
001005203 260__ $$c2023
001005203 3367_ $$2DCMI$$aSoftware
001005203 3367_ $$0PUB:(DE-HGF)33$$2PUB:(DE-HGF)$$aSoftware$$bsware$$msware$$s1677738387_7568
001005203 3367_ $$2BibTeX$$aMISC
001005203 3367_ $$06$$2EndNote$$aComputer Program
001005203 3367_ $$2ORCID$$aOTHER
001005203 3367_ $$2DataCite$$aSoftware
001005203 520__ $$aNESTML 5.2.0 contains many fixes, enhancements in user experience, and documentation updates. Add support for NEST 3.4 Support vector input ports in differential equations Made input ports more consistent in formulation and easier to use Allow solver selection of numeric vs. analytic solver in NEST code generator Compile NESTML generated code multithreaded Allow Node parameters and state variables to be assigned NEST probability distributions Add spike-frequency adaptation tutorial to the documentation For further information, please visit https://github.com/nest/nestml .
001005203 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001005203 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001005203 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x2
001005203 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x3
001005203 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x4
001005203 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x5
001005203 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x6
001005203 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x7
001005203 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x8
001005203 588__ $$aDataset connected to DataCite
001005203 7001_ $$0P:(DE-Juel1)186954$$aBabu, Pooja$$b1$$ufzj
001005203 7001_ $$0P:(DE-Juel1)190223$$aBenelhedi, Mohamed Ayssar$$b2$$ufzj
001005203 7001_ $$0P:(DE-Juel1)173676$$aVogelsang, Jan$$b3$$ufzj
001005203 7001_ $$0P:(DE-Juel1)191265$$aFischer, Angela$$b4$$ufzj
001005203 7001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen Martin$$b5$$ufzj
001005203 7001_ $$0P:(DE-HGF)0$$aRumpe, Bernhard$$b6
001005203 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b7$$ufzj
001005203 773__ $$a10.5281/ZENODO.7648959
001005203 8564_ $$uhttps://doi.org/10.5281/zenodo.7648959
001005203 909CO $$ooai:juser.fz-juelich.de:1005203$$pec_fundedresources$$pVDB$$popenaire
001005203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176305$$aForschungszentrum Jülich$$b0$$kFZJ
001005203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186954$$aForschungszentrum Jülich$$b1$$kFZJ
001005203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190223$$aForschungszentrum Jülich$$b2$$kFZJ
001005203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173676$$aForschungszentrum Jülich$$b3$$kFZJ
001005203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191265$$aForschungszentrum Jülich$$b4$$kFZJ
001005203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142538$$aForschungszentrum Jülich$$b5$$kFZJ
001005203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b7$$kFZJ
001005203 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001005203 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001005203 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x2
001005203 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x3
001005203 9141_ $$y2023
001005203 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001005203 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
001005203 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2
001005203 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x3
001005203 980__ $$asware
001005203 980__ $$aVDB
001005203 980__ $$aI:(DE-Juel1)JSC-20090406
001005203 980__ $$aI:(DE-Juel1)INM-6-20090406
001005203 980__ $$aI:(DE-Juel1)IAS-6-20130828
001005203 980__ $$aI:(DE-Juel1)INM-10-20170113
001005203 980__ $$aUNRESTRICTED
001005203 981__ $$aI:(DE-Juel1)IAS-6-20130828