001005227 001__ 1005227
001005227 005__ 20240711085655.0
001005227 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2023.02.005
001005227 0247_ $$2ISSN$$a0955-2219
001005227 0247_ $$2ISSN$$a1873-619X
001005227 0247_ $$2Handle$$a2128/34276
001005227 0247_ $$2WOS$$aWOS:000951698900001
001005227 037__ $$aFZJ-2023-01375
001005227 082__ $$a660
001005227 1001_ $$0P:(DE-Juel1)136812$$aBakan, Emine$$b0$$eCorresponding author
001005227 245__ $$aCrack healing mechanisms in atmospheric plasma sprayed Yb-silicate coatings during post-process heat treatment
001005227 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001005227 3367_ $$2DRIVER$$aarticle
001005227 3367_ $$2DataCite$$aOutput Types/Journal article
001005227 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681392626_18526
001005227 3367_ $$2BibTeX$$aARTICLE
001005227 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005227 3367_ $$00$$2EndNote$$aJournal Article
001005227 520__ $$aThe microstructural evolution of partially amorphous, atmospheric plasma-sprayed Yb-silicate coatings was investigated after heat treatment (HT, 1300 °C). Open porosity as well as crack area and widths in the coatings were characterized. A correlation was found between the increasing amorphous content of the as-sprayed coatings and the reduction in crack area due to crack healing after HT. Characterization results also suggested larger crack widths in the coatings after HT. The first crack-healing mechanism proposed was the capillarity-driven viscous flow of the amorphous phase in the coatings. It was experimentally shown that viscous flow-driven crack spheroidization (crack width enlargement), and crack healing started in the coatings at 1050 °C. Secondly, metastable to stable phase transformation (> 1100 °C) induced expansion in the constrained coatings was discussed as a crack healing mechanism. Finally, a two-step heat treatment was designed to prevent crack width enlargement during HT resulting in reduced porosity.
001005227 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
001005227 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005227 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b1$$ufzj
001005227 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2023.02.005$$gp. S0955221923000936$$n8$$p3684-3693$$tJournal of the European Ceramic Society$$v43$$x0955-2219$$y2023
001005227 8564_ $$uhttps://juser.fz-juelich.de/record/1005227/files/1-s2.0-S0955221923000936-main-1.pdf$$yRestricted
001005227 8564_ $$uhttps://juser.fz-juelich.de/record/1005227/files/post-referee%20draft_2023_JECERS_Bakan.pdf$$yPublished on 2023-02-04. Available in OpenAccess from 2024-02-04.
001005227 909CO $$ooai:juser.fz-juelich.de:1005227$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136812$$aForschungszentrum Jülich$$b0$$kFZJ
001005227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b1$$kFZJ
001005227 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
001005227 9141_ $$y2023
001005227 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001005227 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001005227 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001005227 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001005227 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2022$$d2023-08-29
001005227 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001005227 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001005227 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
001005227 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
001005227 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001005227 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001005227 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-29
001005227 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001005227 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EUR CERAM SOC : 2022$$d2023-08-29
001005227 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001005227 9801_ $$aFullTexts
001005227 980__ $$ajournal
001005227 980__ $$aVDB
001005227 980__ $$aUNRESTRICTED
001005227 980__ $$aI:(DE-Juel1)IEK-1-20101013
001005227 981__ $$aI:(DE-Juel1)IMD-2-20101013