

Curie Temperature Prediction of Magnetic Heusler Alloys Using Ab-initio Data

Classifying Heusler compounds for potential industrial application

Robin Hilgers*†, Stefan Blügel*†, Ira Assent[‡], Daniel Wortmann[†], Dirk Witthaut§

INTRODUCTION

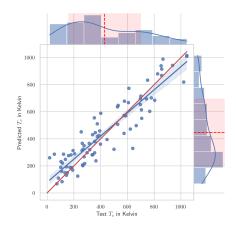
- Computational Materials Science: Predict macroscopic properties from molecular structure.
- Example: Predicting the material specific Curie temperature T_c for different Heusler alloys based on simulation data. 1 \Rightarrow Application in magnetic storage devices requires high T_c . ⇒Aim for a regression as well as a classification approach.
- Challenge: Training data is sparse and expensive to get.
- Complementary work at IAS-1/HDS-LEE to establish reference

METHODS

Established - but computationally costly - way to predict T_c :

Our goal is to either replace both simulation steps or at least the MC step by ML algorithms.

Results

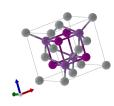


- Classification works well even without DFT data.
- Regression requires DFT generated magnetic structure data.
- Using Shapley Additive exPlanation (SHAP) we could validate the magnetic compound properties are crucial for the T_c .²
- We published the developed code and the data we processed from the Heusler data base JuHemd.3,4

Model	Test F1 Score	Test Accuracy
Extra Trees	0.90625	0.92683
Logistic Reg.	0.83871	0.87805

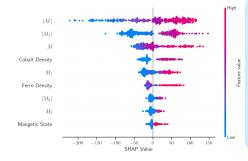
Upcoming Paper:

In preparation: Hilgers, R. et al. Curie temperature prediction models of magnetic Heusler alloys using machine learning methods based on first-principles data from ab-initio KKR-GF calculations, to be submitted to Physical Review Materials



Conclusion

- False negative classification ${\rm rate} < 3\%$ without DFT data ⇒Meets industry requirements for high-throughput screening.
- Physical insights can be derived from explainable models (XAI) which have no information about the underlying physics.



Future work

- Extending the materials space to general 2-D materials instead of picking a subclass.
- Extending the presented approach to other magnetic material classes.
- Predicting further magnetic material quantities using ML models.

REFERENCES

- 1. Kováčik, R., Mavropoulos, P. & Blügel, S. The JuHemd (Jülich-Heusler-magnetic-database) of the Monte Carlo simulated critical temperatures of the magnetic phase transition for experimentally reported Heusler and Heusler-like materials.
- 2. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Natu
- 3. Hilgers, R., Wortmann, D. & Blügel, S. ML-ready Curie temperatures and descriptors extracted from the JuHemd database.
- 4. Hilgers, R., Wortmann, D. & Blügel, S. Data processing for the JuHemd database and ML-training and evaluation scripts.

^{*} Department of Physics, RWTH Aachen University, Aachen, Germany † Institute of Advanced Simulation (IAS-1), Forschungszentrum Jülich, Jülich, Germany

[‡] Department of Computer Science, Aarhus University, Aarhus, Denmark § Institute for Theoretical Physics, University of Cologne, Köln, Germany