001     1005263
005     20240712112838.0
024 7 _ |a 10.3389/fchem.2023.1152113
|2 doi
024 7 _ |a 2128/34239
|2 Handle
024 7 _ |a 36970412
|2 pmid
024 7 _ |a WOS:000958538300001
|2 WOS
037 _ _ |a FZJ-2023-01390
082 _ _ |a 540
100 1 _ |a Alekseev, Evgeny
|0 P:(DE-Juel1)144426
|b 0
|e Corresponding author
245 _ _ |a Understanding of the Structural Chemistry in the Uranium Oxo-Tellurium System under HT/HP Conditions
260 _ _ |a Lausanne
|c 2023
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680266375_31395
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The study of phase formation in the U-Te-O systems with mono and divalent cations under high-temperature high-pressure (HT/HP) conditions has resulted in four new inorganic compounds: K2[(UO2)(Te2O7)], Mg[(UO2)(TeO3)2], Sr[(UO2)(TeO3)2] and Sr[(UO2)(TeO5)]. Tellurium occurs as TeIV, TeV, and TeVI in these phases which demonstrate the high chemical flexibility of the system. Uranium (VI) adopts a variety of coordinations, namely, UO6 in K2[(UO2)(Te2O7), UO7 in Mg[(UO2)(TeO3)2] and Sr[(UO2)(TeO3)2], and UO8 in Sr[(UO2)(TeO5)]. The structure of K2[(UO2)(Te2O7)] is featured with one dimensional (1D) [Te2O7]4- chains along the c-axis. The Te2O7 chains are further linked by UO6 polyhedra, forming the 3D [(UO2)(Te2O7)]2- anionic frameworks. In Mg[(UO2)(TeO3)2], TeO4 disphenoids share common corners with each other resulting in infinite 1D chains of [(TeO3)2]4- propagating along the a-axis. These chains link the uranyl bipyramids by edge sharing along two edges of the disphenoids, resulting in the 2D layered structure of [(UO2)(Te2O6)]2-. The structure of Sr[(UO2)(TeO3)2] is based on 1D chains of [(UO2)(TeO3)2]∞2− propagating into the c-axis. These chains are formed by edge-sharing uranyl bipyramids which are additionally fused together by two TeO4 disphenoids, which also share two edges. The 3D framework structure of Sr[(UO2)(TeO5)] is composed of 1D [TeO5]4− chains sharing edges with UO7 bipyramids. Three tunnels based on 6-Membered rings (MRs) are propagating along [001], [010] and [100] directions. The HT/HP synthetic conditions for the preparation of single crystalline samples and their structural aspects are discussed in this work.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Yucheng, Hao
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Langer, Eike
|0 P:(DE-Juel1)159447
|b 2
|u fzj
700 1 _ |a Bin, Xiao
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kegler, Philip
|0 P:(DE-Juel1)159378
|b 4
|u fzj
700 1 _ |a Cao, Xin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kunhong, Hu
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 7
|u fzj
700 1 _ |a Shuao, Wang
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.3389/fchem.2023.1152113
|g Vol. 11, p. 1152113
|0 PERI:(DE-600)2711776-5
|p 1152113
|t Frontiers in Chemistry
|v 11
|y 2023
|x 2296-2646
856 4 _ |u https://juser.fz-juelich.de/record/1005263/files/fchem-11-1152113.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005263
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159447
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159378
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-13T10:38:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-13T10:38:39Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT CHEM : 2022
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-13T10:38:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRONT CHEM : 2022
|d 2023-08-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21