001005265 001__ 1005265
001005265 005__ 20230929112516.0
001005265 0247_ $$2doi$$a10.1190/geo2021-0683.1
001005265 0247_ $$2ISSN$$a0016-8033
001005265 0247_ $$2ISSN$$a1942-2156
001005265 0247_ $$2WOS$$aWOS:000983193900005
001005265 037__ $$aFZJ-2023-01392
001005265 082__ $$a550
001005265 1001_ $$0P:(DE-Juel1)167453$$aHoven, Dominik$$b0$$eCorresponding author
001005265 245__ $$aEvaluation of starting model approaches and effective source wavelet variations for high-frequency ground-penetrating radar full-waveform inversion
001005265 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2023
001005265 3367_ $$2DRIVER$$aarticle
001005265 3367_ $$2DataCite$$aOutput Types/Journal article
001005265 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681393228_19532
001005265 3367_ $$2BibTeX$$aARTICLE
001005265 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005265 3367_ $$00$$2EndNote$$aJournal Article
001005265 520__ $$aHigh-frequency ground-penetrating radar (GPR) full-waveform inversion (FWI) can enhance the characterization of small-scale structures in the subsurface below the decimeter scale. We have investigated the potential and requirements to use FWI for higher-frequency data. Thereby, we focus on the two most important criteria to achieve reliable FWI results: adequate starting models that fulfill the half-wavelength criterion and the accuracy of the effective source wavelet. Therefore, we have defined a realistic reference model, generated synthetic GPR data sets (200, 450, and 700 MHz), and tested different standard ray-based starting model methods and frequency-hopping approaches to derive results close to our reference model. Although standard starting models provide good parameter reconstruction for lower-frequency data, a frequency-hopping approach is required for the 700 MHz data. In addition, we have seen that the reconstruction of the conductivity results is more sensitive to the presence of noise (25 dB) than the permittivity tomograms. The definition of the effective source wavelets is directly linked to the accuracy of the starting models; therefore, we investigate the effect on the FWI results for high-frequency data by varying the source wavelets in terms of starting time and/or amplitude. Considering the multiparameter nature of FWI, we observe that time shifts have a greater influence on the performance of the FWI than amplitude variations. Large time shifts of approximately 0.1 ns for the 700 MHz data may lead to the failure of the inversion, whereas amplitude variations (±5% of the maximum amplitude) affect the quantitative conductivity results only (no effect on permittivity) with an increased root-mean-square error of the data of up to 20%. Using a stochastically perturbed synthetic model, we determine an improved parameter reconstruction for higher frequencies. On the basis of our findings, we develop a workflow to obtain reliable results for high-frequency GPR FWI for future users.
001005265 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001005265 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005265 7001_ $$0P:(DE-Juel1)140421$$aMester, Achim$$b1
001005265 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b2
001005265 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b3
001005265 773__ $$0PERI:(DE-600)2033021-2$$a10.1190/geo2021-0683.1$$gVol. 88, no. 2, p. KS27 - KS45$$n2$$pKS27 - KS45$$tGeophysics$$v88$$x0016-8033$$y2023
001005265 8564_ $$uhttps://juser.fz-juelich.de/record/1005265/files/Invoice_0001105214.pdf
001005265 8564_ $$uhttps://juser.fz-juelich.de/record/1005265/files/GEO-2021-0683_AUTHOR_3-1-3.pdf$$yRestricted
001005265 8767_ $$80001105214$$92023-03-02$$a1200191833$$d2023-03-28$$ePage charges$$jZahlung erfolgt$$zUSD 2475,-
001005265 909CO $$ooai:juser.fz-juelich.de:1005265$$popenCost$$pOpenAPC$$pVDB
001005265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167453$$aForschungszentrum Jülich$$b0$$kFZJ
001005265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140421$$aForschungszentrum Jülich$$b1$$kFZJ
001005265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b2$$kFZJ
001005265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b3$$kFZJ
001005265 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001005265 9141_ $$y2023
001005265 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005265 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001005265 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-29
001005265 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-29
001005265 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001005265 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001005265 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001005265 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYSICS : 2022$$d2023-08-29
001005265 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001005265 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
001005265 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001005265 980__ $$ajournal
001005265 980__ $$aVDB
001005265 980__ $$aI:(DE-Juel1)IBG-3-20101118
001005265 980__ $$aAPC
001005265 980__ $$aUNRESTRICTED
001005265 9801_ $$aAPC