001     1005265
005     20230929112516.0
024 7 _ |a 10.1190/geo2021-0683.1
|2 doi
024 7 _ |a 0016-8033
|2 ISSN
024 7 _ |a 1942-2156
|2 ISSN
024 7 _ |a WOS:000983193900005
|2 WOS
037 _ _ |a FZJ-2023-01392
082 _ _ |a 550
100 1 _ |a Hoven, Dominik
|0 P:(DE-Juel1)167453
|b 0
|e Corresponding author
245 _ _ |a Evaluation of starting model approaches and effective source wavelet variations for high-frequency ground-penetrating radar full-waveform inversion
260 _ _ |a Alexandria, Va.
|c 2023
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1681393228_19532
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High-frequency ground-penetrating radar (GPR) full-waveform inversion (FWI) can enhance the characterization of small-scale structures in the subsurface below the decimeter scale. We have investigated the potential and requirements to use FWI for higher-frequency data. Thereby, we focus on the two most important criteria to achieve reliable FWI results: adequate starting models that fulfill the half-wavelength criterion and the accuracy of the effective source wavelet. Therefore, we have defined a realistic reference model, generated synthetic GPR data sets (200, 450, and 700 MHz), and tested different standard ray-based starting model methods and frequency-hopping approaches to derive results close to our reference model. Although standard starting models provide good parameter reconstruction for lower-frequency data, a frequency-hopping approach is required for the 700 MHz data. In addition, we have seen that the reconstruction of the conductivity results is more sensitive to the presence of noise (25 dB) than the permittivity tomograms. The definition of the effective source wavelets is directly linked to the accuracy of the starting models; therefore, we investigate the effect on the FWI results for high-frequency data by varying the source wavelets in terms of starting time and/or amplitude. Considering the multiparameter nature of FWI, we observe that time shifts have a greater influence on the performance of the FWI than amplitude variations. Large time shifts of approximately 0.1 ns for the 700 MHz data may lead to the failure of the inversion, whereas amplitude variations (±5% of the maximum amplitude) affect the quantitative conductivity results only (no effect on permittivity) with an increased root-mean-square error of the data of up to 20%. Using a stochastically perturbed synthetic model, we determine an improved parameter reconstruction for higher frequencies. On the basis of our findings, we develop a workflow to obtain reliable results for high-frequency GPR FWI for future users.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mester, Achim
|0 P:(DE-Juel1)140421
|b 1
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 2
700 1 _ |a Klotzsche, Anja
|0 P:(DE-Juel1)129483
|b 3
773 _ _ |a 10.1190/geo2021-0683.1
|g Vol. 88, no. 2, p. KS27 - KS45
|0 PERI:(DE-600)2033021-2
|n 2
|p KS27 - KS45
|t Geophysics
|v 88
|y 2023
|x 0016-8033
856 4 _ |u https://juser.fz-juelich.de/record/1005265/files/Invoice_0001105214.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1005265/files/GEO-2021-0683_AUTHOR_3-1-3.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1005265
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167453
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)140421
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129483
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYSICS : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-29
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21