001005270 001__ 1005270
001005270 005__ 20231027114356.0
001005270 0247_ $$2doi$$a10.3390/su15054343
001005270 0247_ $$2Handle$$a2128/34090
001005270 0247_ $$2WOS$$aWOS:000948231100001
001005270 037__ $$aFZJ-2023-01397
001005270 041__ $$aEnglish
001005270 082__ $$a690
001005270 1001_ $$00000-0001-6094-7659$$aPisinaras, Vassilios$$b0$$eCorresponding author
001005270 245__ $$aFully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study
001005270 260__ $$aBasel$$bMDPI$$c2023
001005270 3367_ $$2DRIVER$$aarticle
001005270 3367_ $$2DataCite$$aOutput Types/Journal article
001005270 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678365932_1186
001005270 3367_ $$2BibTeX$$aARTICLE
001005270 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005270 3367_ $$00$$2EndNote$$aJournal Article
001005270 520__ $$aRobust assessments of variations in freshwater availability are essential for current and future water resource management in the Pinios River Basin (PRB), which is one of the most productive basins of Greece in terms of agriculture. To support sustainable water resources management in the PRB, we set up and calibrated the mGROWA hydrological model at a high spatial (100 m) and temporal (daily) resolution for the period 1971–2000, with particular attention given to deriving crop-specific irrigation requirements. We developed and implemented a comprehensive methodological framework to overcome data scarcity constraints in the PRB, thus enabling the derivation of high-resolution spatially continuous estimates of many input variables required for the mGROWA model. We generated estimates of spatiotemporal variations in the water balance components actual evapotranspiration, irrigation requirements, total runoff, and groundwater recharge for the PRB. In addition, through the calculation of indices, such as the potential irrigation to groundwater recharge ratio (PIQR), we demonstrate a way to identify potential unsustainable water use in irrigated agriculture. The established mGROWA model can be used both as a hydrological reference model providing continuous decision support for water resources management, focusing on irrigation water use, and a basis for climate impact studies for the PRB.
001005270 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001005270 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005270 65027 $$0V:(DE-MLZ)SciArea-140$$2V:(DE-HGF)$$aGeosciences$$x0
001005270 7001_ $$0P:(DE-Juel1)141774$$aHerrmann, Frank$$b1
001005270 7001_ $$00000-0002-8164-7871$$aPanagopoulos, Andreas$$b2
001005270 7001_ $$00000-0002-1694-6744$$aTziritis, Evangelos$$b3
001005270 7001_ $$0P:(DE-Juel1)189091$$aMcNamara, Ian$$b4$$ufzj
001005270 7001_ $$0P:(DE-Juel1)129554$$aWendland, Frank$$b5
001005270 773__ $$0PERI:(DE-600)2518383-7$$a10.3390/su15054343$$gVol. 15, no. 5, p. 4343 -$$n5$$p4343 -$$tSustainability$$v15$$x2071-1050$$y2023
001005270 8564_ $$uhttps://juser.fz-juelich.de/record/1005270/files/sustainability-15-04343-v2.pdf$$yOpenAccess
001005270 909CO $$ooai:juser.fz-juelich.de:1005270$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005270 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141774$$aForschungszentrum Jülich$$b1$$kFZJ
001005270 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)189091$$aForschungszentrum Jülich$$b4$$kFZJ
001005270 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129554$$aForschungszentrum Jülich$$b5$$kFZJ
001005270 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001005270 9141_ $$y2023
001005270 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001005270 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005270 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001005270 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-15
001005270 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005270 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-15
001005270 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:03:19Z
001005270 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:03:19Z
001005270 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:03:19Z
001005270 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUSTAINABILITY-BASEL : 2022$$d2023-10-26
001005270 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001005270 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001005270 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001005270 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001005270 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2023-10-26
001005270 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-10-26
001005270 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2023-10-26
001005270 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001005270 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001005270 980__ $$ajournal
001005270 980__ $$aVDB
001005270 980__ $$aUNRESTRICTED
001005270 980__ $$aI:(DE-Juel1)IBG-3-20101118
001005270 9801_ $$aFullTexts