001005280 001__ 1005280 001005280 005__ 20240712113125.0 001005280 0247_ $$2doi$$a10.1039/D2CP03756D 001005280 0247_ $$2ISSN$$a1463-9076 001005280 0247_ $$2ISSN$$a1463-9084 001005280 0247_ $$2Handle$$a2128/34480 001005280 0247_ $$2pmid$$a36692378 001005280 0247_ $$2WOS$$aWOS:000917744100001 001005280 037__ $$aFZJ-2023-01398 001005280 082__ $$a540 001005280 1001_ $$0P:(DE-Juel1)171477$$aGerlitz, Anna I.$$b0 001005280 245__ $$aPolypropylene carbonate-based electrolytes as model for a different approach towards improved ion transport properties for novel electrolytes 001005280 260__ $$aCambridge$$bRSC Publ.$$c2023 001005280 3367_ $$2DRIVER$$aarticle 001005280 3367_ $$2DataCite$$aOutput Types/Journal article 001005280 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1685607420_29431 001005280 3367_ $$2BibTeX$$aARTICLE 001005280 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001005280 3367_ $$00$$2EndNote$$aJournal Article 001005280 520__ $$aLinear poly(alkylene carbonates) such as polyethylene carbonate (PEC) and polypropylene carbonate (PPC) have gained increasing interest due to their remarkable ion transport properties such as high Li+ transference numbers. The cause of these properties is not yet fully understood which makes it challenging to replicate them in other polymer electrolytes. Therefore, it is critical to understand the underlying mechanisms in polycarbonate electrolytes such as PPC. In this work we present insights from impedance spectroscopy, transference number measurements, PFG-NMR, IR and Raman spectroscopy as well as molecular dynamics simulations to address this issue. We find that in addition to plasticization, the lithium ion coordination by the carbonate groups of the polymer is weakened upon gelation, leading to a rapid exhange of the lithium ion solvation shell and consequently a strong increase of the conductivity. Moreover, we study the impact of the anions by employing different conducting salts. Interestingly, while the total conductivity decreases with increasing anion size, the reverse trend can be observed for the lithium ion transference numbers. Via our holistic approach, we demonstrate that this behavior can be attributed to differences in the collective ion dynamics. 001005280 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001005280 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001005280 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b1$$eCorresponding author 001005280 7001_ $$aGrünebaum, Mariano$$b2 001005280 7001_ $$0P:(DE-Juel1)176646$$aHeuer, Andreas$$b3 001005280 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj 001005280 7001_ $$0P:(DE-Juel1)176785$$aWiemhöfer, Hans-Dieter$$b5 001005280 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D2CP03756D$$gVol. 25, no. 6, p. 4810 - 4823$$n6$$p4810 - 4823$$tPhysical chemistry, chemical physics$$v25$$x1463-9076$$y2023 001005280 8564_ $$uhttps://juser.fz-juelich.de/record/1005280/files/d2cp03756d.pdf$$yOpenAccess 001005280 8767_ $$d2023-03-07$$eHybrid-OA$$jPublish and Read 001005280 909CO $$ooai:juser.fz-juelich.de:1005280$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire 001005280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b1$$kFZJ 001005280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176646$$aForschungszentrum Jülich$$b3$$kFZJ 001005280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ 001005280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176785$$aForschungszentrum Jülich$$b5$$kFZJ 001005280 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001005280 9141_ $$y2023 001005280 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001005280 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 001005280 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 001005280 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021 001005280 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 001005280 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16 001005280 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16 001005280 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001005280 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-21$$wger 001005280 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2023-10-21 001005280 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21 001005280 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21 001005280 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21 001005280 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21 001005280 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21 001005280 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21 001005280 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 001005280 9801_ $$aAPC 001005280 9801_ $$aFullTexts 001005280 980__ $$ajournal 001005280 980__ $$aVDB 001005280 980__ $$aUNRESTRICTED 001005280 980__ $$aI:(DE-Juel1)IEK-12-20141217 001005280 980__ $$aAPC 001005280 981__ $$aI:(DE-Juel1)IMD-4-20141217