001005285 001__ 1005285
001005285 005__ 20250317091733.0
001005285 0247_ $$2doi$$a10.1103/PhysRevB.107.115402
001005285 0247_ $$2ISSN$$a2469-9950
001005285 0247_ $$2ISSN$$a2469-9977
001005285 0247_ $$2ISSN$$a0163-1829
001005285 0247_ $$2ISSN$$a0556-2805
001005285 0247_ $$2ISSN$$a1095-3795
001005285 0247_ $$2ISSN$$a1098-0121
001005285 0247_ $$2ISSN$$a1538-4489
001005285 0247_ $$2ISSN$$a1550-235X
001005285 0247_ $$2ISSN$$a2469-9969
001005285 0247_ $$2Handle$$a2128/34110
001005285 0247_ $$2WOS$$aWOS:000945908500003
001005285 037__ $$aFZJ-2023-01400
001005285 082__ $$a530
001005285 1001_ $$00000-0002-3830-3571$$aCysne, Tarik P.$$b0$$eCorresponding author
001005285 245__ $$aOrbital magnetoelectric effect in nanoribbons of transition metal dichalcogenides
001005285 260__ $$aWoodbury, NY$$bInst.$$c2023
001005285 3367_ $$2DRIVER$$aarticle
001005285 3367_ $$2DataCite$$aOutput Types/Journal article
001005285 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678692153_22889
001005285 3367_ $$2BibTeX$$aARTICLE
001005285 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005285 3367_ $$00$$2EndNote$$aJournal Article
001005285 520__ $$aThe orbital magnetoelectric effect (OME) generically refers to the appearance of an orbital magnetization induced by an applied electric field. Here, we show that nanoribbons of transition metal dichalcogenides (TMDs) with zigzag edges may exhibit a sizable OME activated by an electric field applied along the ribbons' axis. We examine nanoribbons extracted from a monolayer (1L) and a bilayer (2L) of MoS2 in the trigonal structural phase. Transverse profiles of the induced orbital angular momentum accumulations are calculated to first order in the longitudinally applied electric field. Our results show that close to the nanoribbon's edge-state crossings energy, the orbital angular momentum accumulations take place mainly around the ribbons' edges. They have two contributions: one arising from the orbital Hall effect (OHE) and the other consisting in the OME. The former is transversely antisymmetric with respect to the principal axis of the nanoribbon, whereas the latter is symmetric and hence responsible for the resultant orbital magnetization induced in the system. We found that the orbital accumulation originating from the OHE for the 1L nanoribbon is approximately half that of a 2L nanoribbon. Furthermore, while the OME can reach fairly high values in 1L-TMD nanoribbons, it vanishes in the 2L ones that preserve spatial inversion symmetry. The microscopic features that justify our findings are also discussed.
001005285 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001005285 536__ $$0G:(DE-Juel-1)ATMLAO$$aATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)$$cATMLAO$$x1
001005285 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005285 7001_ $$0P:(DE-Juel1)162225$$aGuimarães, Filipe S. M.$$b1$$eCorresponding author
001005285 7001_ $$0P:(DE-HGF)0$$aCanonico, Luis M.$$b2
001005285 7001_ $$0P:(DE-HGF)0$$aCosta, Marcio$$b3
001005285 7001_ $$0P:(DE-HGF)0$$aRappoport, Tatiana G.$$b4
001005285 7001_ $$0P:(DE-HGF)0$$aMuniz, R. B.$$b5
001005285 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.107.115402$$gVol. 107, no. 11, p. 115402$$n11$$p115402$$tPhysical review / B$$v107$$x2469-9950$$y2023
001005285 8564_ $$uhttps://juser.fz-juelich.de/record/1005285/files/PhysRevB.107.115402.pdf$$yOpenAccess
001005285 909CO $$ooai:juser.fz-juelich.de:1005285$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162225$$aForschungszentrum Jülich$$b1$$kFZJ
001005285 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001005285 9141_ $$y2023
001005285 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
001005285 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-11
001005285 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001005285 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
001005285 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005285 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001005285 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001005285 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001005285 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001005285 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2023-10-27
001005285 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001005285 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001005285 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001005285 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001005285 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001005285 980__ $$ajournal
001005285 980__ $$aVDB
001005285 980__ $$aUNRESTRICTED
001005285 980__ $$aI:(DE-Juel1)JSC-20090406
001005285 9801_ $$aFullTexts