001005287 001__ 1005287
001005287 005__ 20231027114356.0
001005287 0247_ $$2doi$$a10.1103/PhysRevB.107.104404
001005287 0247_ $$2ISSN$$a2469-9950
001005287 0247_ $$2ISSN$$a2469-9977
001005287 0247_ $$2ISSN$$a0163-1829
001005287 0247_ $$2ISSN$$a0556-2805
001005287 0247_ $$2ISSN$$a1095-3795
001005287 0247_ $$2ISSN$$a1098-0121
001005287 0247_ $$2ISSN$$a1538-4489
001005287 0247_ $$2ISSN$$a1550-235X
001005287 0247_ $$2ISSN$$a2469-9969
001005287 0247_ $$2Handle$$a2128/34083
001005287 0247_ $$2WOS$$aWOS:000955025000006
001005287 037__ $$aFZJ-2023-01402
001005287 082__ $$a530
001005287 1001_ $$0P:(DE-Juel1)174583$$aSallermann, Moritz$$b0$$eCorresponding author$$ufzj
001005287 245__ $$aStability of hopfions in bulk magnets with competing exchange interactions
001005287 260__ $$aWoodbury, NY$$bInst.$$c2023
001005287 3367_ $$2DRIVER$$aarticle
001005287 3367_ $$2DataCite$$aOutput Types/Journal article
001005287 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678193593_19880
001005287 3367_ $$2BibTeX$$aARTICLE
001005287 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005287 3367_ $$00$$2EndNote$$aJournal Article
001005287 520__ $$aMagnetic hopfions are string-like three-dimensional topological solitons, characterised by the Hopf number. They serve as a fundamental prototype for three-dimensional magnetic quasiparticles and are an inspiration for novel device concepts in the field of spintronics. Based on a micromagnetic model and without considering temperature, the existence of such hopfions has been predicted in certain magnets with competing exchange interactions. However, physical realisation of freely moving hopfions in bulk magnets have so far been elusive. Here, we consider an effective Heisenberg model with competing exchange interactions and study the stability of small toroidal hopfions with Hopf number QH=1 by finding first-order saddle points on the energy surface representing the transition state for the decay of hopfions via the formation of two coupled Bloch points. We combine the geodesic nudged elastic band method and an adapted implementation of the dimer method to resolve the sharp energy profile of the reaction path near the saddle point. Our analysis reveals that the energy barrier can reach substantial height and is largely determined by the size of the hopfion relative to the lattice constant.
001005287 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001005287 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005287 7001_ $$0P:(DE-HGF)0$$aJónsson, Hannes$$b1
001005287 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
001005287 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.107.104404$$gVol. 107, no. 10, p. 104404$$n10$$p104404$$tPhysical review / B$$v107$$x2469-9950$$y2023
001005287 8564_ $$uhttps://juser.fz-juelich.de/record/1005287/files/PhysRevB.107.104404.pdf$$yOpenAccess
001005287 909CO $$ooai:juser.fz-juelich.de:1005287$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005287 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174583$$aForschungszentrum Jülich$$b0$$kFZJ
001005287 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland$$b1
001005287 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001005287 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001005287 9141_ $$y2023
001005287 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
001005287 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-11
001005287 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001005287 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
001005287 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005287 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001005287 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001005287 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001005287 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001005287 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2023-10-27
001005287 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001005287 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001005287 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001005287 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001005287 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001005287 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001005287 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001005287 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
001005287 980__ $$ajournal
001005287 980__ $$aVDB
001005287 980__ $$aUNRESTRICTED
001005287 980__ $$aI:(DE-Juel1)IAS-1-20090406
001005287 980__ $$aI:(DE-Juel1)PGI-1-20110106
001005287 980__ $$aI:(DE-82)080009_20140620
001005287 980__ $$aI:(DE-82)080012_20140620
001005287 9801_ $$aFullTexts