001     1005289
005     20231027114356.0
024 7 _ |a 10.22331/q-2023-03-09-942
|2 doi
024 7 _ |a 2128/34362
|2 Handle
024 7 _ |a WOS:000979644900001
|2 WOS
037 _ _ |a FZJ-2023-01404
082 _ _ |a 530
100 1 _ |a Locher, David
|0 P:(DE-Juel1)190763
|b 0
|e Corresponding author
245 _ _ |a Quantum Error Correction with Quantum Autoencoders
260 _ _ |a Wien
|c 2023
|b Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683111125_3821
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Active quantum error correction is a central ingredient to achieve robust quantum processors. Inthis paper we investigate the potential of quantum machine learning for quantum error correction.Specifically, we demonstrate how quantum neural networks, in the form of quantum autoencoders,can be trained to learn optimal strategies for active detection and correction of errors, includingspatially correlated computational errors as well as qubit losses. We highlight that the denoisingcapabilities of quantum autoencoders are not limited to the protection of specific states but extendto the entire logical codespace. We also show that quantum neural networks can be used to discovernew logical encodings that are optimally adapted to the underlying noise. Moreover, we find that,even in the presence of moderate noise in the quantum autoencoders themselves, they may still besuccessfully used to perform beneficial quantum error correction.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cardarelli, Lorenzo
|0 P:(DE-Juel1)184904
|b 1
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 2
|e Corresponding author
773 _ _ |a 10.22331/q-2023-03-09-942
|g Vol. 7, p. 942 -
|0 PERI:(DE-600)2931392-2
|p 942 -
|t Quantum
|v 7
|y 2023
|x 2521-327X
856 4 _ |u https://juser.fz-juelich.de/record/1005289/files/Invoice_34_2023.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1005289/files/q-2023-03-09-942-1.pdf
909 C O |o oai:juser.fz-juelich.de:1005289
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190763
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)184904
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2019-06-12T07:01:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2019-06-12T07:01:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2019-06-12T07:01:21Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2019-06-12T07:01:21Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b QUANTUM-AUSTRIA : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b QUANTUM-AUSTRIA : 2022
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21