001     1005293
005     20250203103307.0
024 7 _ |a 10.1109/OJEMB.2023.3243190
|2 doi
024 7 _ |a 10.34734/FZJ-2023-01408
|2 datacite_doi
024 7 _ |a 39184970
|2 pmid
024 7 _ |a WOS:001294340500001
|2 WOS
037 _ _ |a FZJ-2023-01408
082 _ _ |a 570
100 1 _ |a Sharafutdinov, Konstantin
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Computational simulation of virtual patients reduces dataset bias and improves machine learning-based detection of ARDS from noisy heterogeneous ICU datasets
260 _ _ |a New York, NY
|c 2023
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1724396888_22840
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Goal: Machine learning (ML) technologies that leverage large-scale patient data are promising tools predictingdisease evolution in individual patients. However, the limited generalizability of ML models developed on single-center datasets,and their unproven performance in real-world settings, remain significant constraints to their widespread adoption in clinicalpractice. One approach to tackle this issue is to base learning on large multi-center datasets. However, such heterogeneous datasetscan introduce further biases driven by data origin, as data structures and patient cohorts may differ between hospitals. Methods: Inthis paper, we demonstrate how mechanistic virtual patient (VP) modeling can be used to capture specific features of patients’states and dynamics, while reducing biases introduced by heterogeneous datasets. We show how VP modeling can be used for dataaugmentation through identification of individualized model parameters approximating disease states of patients with suspectedacute respiratory distress syndrome (ARDS) from observational data of mixed origin. We compare the results of an unsupervisedlearning method (clustering) in two cases: where the learning is based on original patient data and on data derived in the matchingprocedure of the VP model to real patient data. Results: More robust cluster configurations were observed in clustering using themodel-derived data. VP model-based clustering also reduced biases introduced by the inclusion of data from different hospitalsand was able to discover an additional cluster with significant ARDS enrichment. Conclusions: Our results indicate thatmechanistic VP modeling can be used to significantly reduce biases introduced by learning from heterogeneous datasets and toallow improved discovery of patient cohorts driven exclusively by medical conditions.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a SMITH - Medizininformatik-Konsortium - Beitrag Forschungszentrum Jülich (01ZZ1803M)
|0 G:(BMBF)01ZZ1803M
|c 01ZZ1803M
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fritsch, Sebastian Johannes
|0 P:(DE-Juel1)185651
|b 1
|u fzj
700 1 _ |a Iravani, Mina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ghalati, Pejman Farhadi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Saffaran, Sina
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bates, Declan G.
|0 0000-0003-1395-9846
|b 5
700 1 _ |a Hardman, Jonathan G.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Polzin, Richard
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mayer, Hannah
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Marx, Gernot
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Bickenbach, Johannes
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Schuppert, Andreas
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1109/OJEMB.2023.3243190
|g p. 1 - 11
|0 PERI:(DE-600)3012072-X
|p 611 - 620
|t IEEE open journal of engineering in medicine and biology
|v 5
|y 2023
|x 2644-1276
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1005293/files/Computational_Simulation_of_Virtual_Patients_Reduces_Dataset_Bias_and_Improves_Machine_Learning-Based_Detection_of_ARDS_from_Noisy_Heterogeneous_ICU_Datasets.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1005293/files/Computational_Simulation_of_Virtual_Patients_Reduces_Dataset_Bias_and_Improves_Machine_Learning-Based_Detection_of_ARDS_from_Noisy_Heterogeneous_ICU_Datasets.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1005293/files/Computational_Simulation_of_Virtual_Patients_Reduces_Dataset_Bias_and_Improves_Machine_Learning-Based_Detection_of_ARDS_from_Noisy_Heterogeneous_ICU_Datasets.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1005293/files/Computational_Simulation_of_Virtual_Patients_Reduces_Dataset_Bias_and_Improves_Machine_Learning-Based_Detection_of_ARDS_from_Noisy_Heterogeneous_ICU_Datasets.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1005293/files/Computational_Simulation_of_Virtual_Patients_Reduces_Dataset_Bias_and_Improves_Machine_Learning-Based_Detection_of_ARDS_from_Noisy_Heterogeneous_ICU_Datasets.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1005293
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185651
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-15T11:06:51Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-15T11:06:51Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-15T11:06:51Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-26
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21