001005303 001__ 1005303
001005303 005__ 20250610131449.0
001005303 0247_ $$2doi$$a10.26599/NRE.2023.9120057
001005303 0247_ $$2Handle$$a2128/34424
001005303 0247_ $$2WOS$$aWOS:001494133100001
001005303 037__ $$aFZJ-2023-01415
001005303 082__ $$a333.7
001005303 1001_ $$0P:(DE-HGF)0$$aYu, Yuan$$b0$$eCorresponding author
001005303 245__ $$aMetavalent bonding impacts charge carrier transport across grain boundaries
001005303 260__ $$aBeijing$$bTsinghua University Press$$c2023
001005303 3367_ $$2DRIVER$$aarticle
001005303 3367_ $$2DataCite$$aOutput Types/Journal article
001005303 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684224556_1638
001005303 3367_ $$2BibTeX$$aARTICLE
001005303 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005303 3367_ $$00$$2EndNote$$aJournal Article
001005303 520__ $$aUnderstanding the mechanisms underpinning the charge carrier scattering at grain boundaries is crucial to design thermoelectrics and other electronic materials. Yet, this is a very challenging task due to the complex characteristics of grain boundaries and the resulting difficulties in correlating grain boundary structures to local properties. Recent advances in characterizing charge transport across grain boundaries are reviewed, demonstrating how the microstructure, composition, chemical bonding and electrical properties of the same individual grain boundary can be correlated. A much higher potential barrier height is observed in high-angle grain boundaries. This can be ascribed to the larger number density of deep trapping states caused by the local collapse of metavalent bonding. A novel approach to study the influence of the local chemical bonding mechanism around defects on the resulting local properties is thus developed. The results provide insights into the tailoring of electronic properties of metavalently bonded compounds by engineering the characteristics of grain boundaries.
001005303 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001005303 588__ $$aDataset connected to DataCite
001005303 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b1
001005303 773__ $$0PERI:(DE-600)3156672-8$$a10.26599/NRE.2023.9120057$$gVol. 2, p. e9120057 -$$pe9120057 -$$tNano research energy$$v2$$x2791-0091$$y2023
001005303 8564_ $$uhttps://juser.fz-juelich.de/record/1005303/files/nre-2-1-9120057.pdf$$yOpenAccess
001005303 909CO $$ooai:juser.fz-juelich.de:1005303$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b1$$kFZJ
001005303 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001005303 9141_ $$y2023
001005303 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005303 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005303 920__ $$lyes
001005303 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
001005303 980__ $$ajournal
001005303 980__ $$aVDB
001005303 980__ $$aUNRESTRICTED
001005303 980__ $$aI:(DE-Juel1)PGI-10-20170113
001005303 9801_ $$aFullTexts