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Abstract: The physicochemical properties of ligand-coated nanoparticles make them superior adsorbents
for heavy metals from water. In this study, we investigate the adsorption potential of novel polyacrylic-
co-maleic-acid-coated magnetite nanoparticles (PAM@MNP) to remove Pb2+ and Cu2+ from an aqueous
solution. We argue that modifying the surface of MNP with PAM enhances the physicochemical
stability of MNP, improving its ability to remove heavy metals. The adsorption kinetics data show that
PAM@MNP attained sorption equilibrium for Pb2+ and Cu2+ after 60 min. The kinetics data are fitted
accurately by the pseudo-first-order kinetic model. The calculated Langmuir adsorption capacities are
518.68 mg g−1 and 179.81 mg g−1 for Pb2+ and Cu2+, respectively (2.50 mmol g−1 and 2.82 mmol g−1

for Pb2+ and Cu2+, respectively). The results indicate that PAM@MNP is a very attractive adsorbent for
heavy metals and can be applied in water remediation technologies.

Keywords: coated magnetite nanoparticles; Pb2+; Cu2+; adsorption kinetics; adsorption isotherms

1. Introduction

In recent years, nanomaterials have gained a lot of attention as adsorbents for heavy
metals due to their high adsorption ability and reusability. The physicochemical properties
of magnetite nanoparticles (MNP) such as surface area, particle size, and surface charge
offer great applicability for the removal of heavy metals from water [1]. MNP used in bare
or modified form exhibit high efficiency for removing Pb, Cu, Zn, Mn, Hg, and Cr from
aqueous systems [2–4]. The adsorption of heavy metals to MNP benefits from the existence
of oxygen-containing functional groups on the magnetite surface, which form complexes
with heavy metal ions [5]. MNP are considered eco-friendly materials, affordable, easy to
use, and susceptible to separation from water solution by magnetic separation [6].

Bare MNP have a great tendency to aggregate or be oxidized in an aqueous solution,
which is why MNP are coated with a wide range of organic and inorganic materials [7].
Coatings provide steric stability for the nanoparticles, diminish their aggregation, and
alter the surface charge, which in turn influences the electrostatic interaction between the
nanoparticles and the sorptive [8].

Polyelectrolyte-coated MNP with excess ligands have a higher potential for Pb2+ and Cu2+

removal than bare MNP [9]. Different studies have demonstrated that coatings containing
organic polymers such as poly(acrylic acid) (PAA), humic acid (HA), or carboxylic methyl
cellulose (CMC) enhance the adsorption of heavy metals (i.e., Pb2+ and Cu2+) due to their
possession of reactive ligands, i.e., carboxyl groups (−COOH), which play a prominent role
in the adsorption process through complex formation and ion exchange [10–15].
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To the best of our knowledge, poly(acrylic acid-co-maleic acid) (PAM) with respect to
its metal-ion-binding ability has been rarely addressed in the literature. Existing studies
focus on using PAM in a hybrid ultrafiltration–electrolytic process to remove Cu2+ and Pb2+

from water [16,17]. The high retention of heavy metals observed in these studies has been
attributed to the strong ligand interaction between metal ions and the polymer, favored by
the presence of carboxyl groups in the polymer structure.

PAM coating was used for the first time on MNP to improve the colloidal stabil-
ity of MNP for biomedical applications [18]. In comparison to other coatings such as
PAA, PAM revealed excellent abilities to be affixed to MNP because maleic acid forms
metal−carboxylate complexation at oxide/electrolyte interfaces [19]. Jang et al. [20] showed
that each poly(acrylic acid-co-maleic acid) (Mw = ~3000 amu) used as a coating for nanopar-
ticles has an equal number of acrylic acid and maleic acid monomers that possess an ample
number of carboxyl groups (−COOH). However, some of these groups can be conjugated
to the nanoparticle surface, while others remain free. Additionally, the geometric match-
ing between the carboxylate groups of maleic acid moieties and the surface sites of the
crystalline phase of magnetite supports inner-sphere complex formation. PAM exhibited
high adsorption affinity to MNP and high dilution resistance associated with the very
low concentration of free PAM in solution compared to PAA [18]. This physicochemical
stability of PAM@MNP makes the material a candidate for environmental remediation
from heavy metals. Based on this, the present study investigates for the first time Pb2+

and Cu2+ removal from an aqueous solution using PAM@MNP by performing adsorption
kinetic and isotherm experiments and modeling.

2. Materials and Methods
2.1. Materials

The synthesis and coating of PAM@MNPs were achieved at the Department of Physical
Chemistry and Materials Science, University of Szeged in Hungary. The preparation and
coating details are described elsewhere [8,18,21]. FTIR-ATR spectra for PAM@MNP are
illustrated in a previous study [22], in addition, TEM images for MNP and PAM@MNP
are shown in Figure S1. Briefly, magnetite (Fe3O4) nanoparticles were prepared by co-
precipitation of Fe2+ and Fe3+ salts in an alkaline (NaOH) medium and purified by dialysis
and magnetic separation. For coating, poly(acrylic acid-co-maleic) acid (PAM) Mw 3000 Da;
15.9 mmol COOH/g polymer was added to magnetite to load 1.3 mmol PAM/g magnetite.
The time of adsorption was set to 1 h and pH was adjusted to ~6.5 using NaOH solution.
Then, 10 g PAM-coated magnetite was dispersed in 200 mL ultrapure water. The produced
PAM@MNP was negatively charged in the pH range from 3 to 10 (Figure S2) [18].

Stock solutions of heavy metals were prepared from copper chloride dihydrate
(CuCl2·2H2O), (purity ≥ 99.0%), and lead chloride (PbCl2) salts (purity ≥ 98.0%), (Sigma
Aldrich, Germany) by dissolving the proper amounts of the salt in Milli-Q water. The lead
salt was stirred for 2 h at 50 ◦C using a magnetic stirrer to attain complete dissolution. The
solutions were further diluted to the desired concentrations for the experiments.

2.2. Instruments and Analytical Methods

The surface area of PAM@MNP measured by BET was 75.9 m2 g−1. It was measured
by nitrogen adsorption and desorption at 77 K using isotherms 5-point BET, Autosorb-1
analyzer (Quantachrome, Syosset, NY, USA). The samples were degassed at 200 ◦C under
helium flow for 1 h before analysis. The zeta potential and hydrodynamic diameter of
PAM@MNP under pH 8.5 and ionic strength of 1 mM measured using Zetasizer (Malvern
Instruments GmbH, Herrenberg, Germany) were −62 ± 3.4 mV and 126 ± 1.5 nm, respec-
tively. A high-speed centrifuge (Avanti JXN-30, Beckman Coulter, Ypasadena, CA, USA)
was used to separate the nanoparticles from the solution. A digital pH meter (Metrohm,
Herissau, Switzerland) was used for pH adjustment of the solutions. The concentrations of
metal ions were measured using ICP-OES (Thermo Scientific, Karlsruhe, Germany).
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2.3. Batch Adsorption Experiments

The surface area adsorption isotherms were determined by adding 0.2 g L−1 PAM@MNP
suspension into 100 mL vials containing 50 mL of Pb2+ and Cu2+ metal solution with differ-
ent concentrations. The pH values for all experiments were adjusted using hydrochloric
acid (HCl) and sodium hydroxide (NaOH) of 0.01 M. The effect of pH on the adsorption
was studied in the range from 3 to 9. The metal concentration was set to 10 mg L−1. The
adsorption kinetics were measured up to 480 min at 20 ◦C using 50 mL Pb2+ or Cu2+

solution (10 mg L−1) mixed with 0.2 g L−1 sorbent. PAM@MNP was mixed with the metal
solution in a horizontal shaker at 180 rpm. After adsorption experiments, the liquid phase
was separated by centrifuging at 48,000 rpm for 30 min (Avanti JXN-30, USA) and then
filtered using 0.1 µm syringe filter (Sartorius, Göttingen, Germany).

The amount of metal adsorbed on PAM@MNP was calculated based on the difference
in metal concentrations in the aqueous solution before and after the adsorption experiment
according to Equation (1)

qe =
(C0 − Ce)× V

m
(1)

where C0 and Ce are the initial and equilibrium concentrations of Pb2+ and Cu2+ (mg L−1

or mmol L−1), qe represents the adsorbed amount (mg g−1 or mmol g−1), m denotes the
mass of PAM@MNP (g), and V is the volume of the solution (L). The removal efficiency R%
was obtained from Equation (2)

R% =
(C0 − Ce)

C0
× 100% (2)

where C0 and Ce (mg L−1) are the same as in Equation (1).

2.4. Kinetics Models of Adsorption

In order to investigate the rate and mechanism of Pb2+ and Cu2+ adsorption, pseudo-
first-order and pseudo-second-order equations were applied to fit the data according to
Equations (3) and (4)

qt = qe

(
1 − e−k1t

)
(3)

qt =
q2

e k2t
qek2t + 1

(4)

where qe and qt are the amounts of heavy metals adsorbed (mg g−1 or mmol g−1) at time
of equilibrium and at time t (min), respectively, and k1 (min−1) and k2 (g mg−1 min−1 or
g mmol−1 min−1) are the rate constants of the pseudo-first-order and second-order model
of adsorption, respectively. The initial adsorption rate h (mg g−1 min−1 or mmol g−1 min−1)
of the second-order model was obtained from k2 qt

2.

2.5. Adsorption Isotherms

The experimental data for Pb2+ and Cu2+ adsorption onto PAM@MNP were fitted to
Langmuir and Freundlich isotherm models as given in Equations (5) and (6), respectively,

qe =
qm KL Ce

1 + KL Ce
(5)

where qe is the amount of metal adsorbed per gram of the adsorbent at equilibrium (mg g−1

or mmol g−1), qm is the Langmuir adsorption capacity (mg g−1 or mmol g−1), KL is
Langmuir isotherm constant (L mg−1 or L mmol−1), and Ce is the equilibrium concentration
of adsorbate (mg L−1 or mmol L−1).

qe = KF C 1/n
e (6)
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where qe refers to the amount of metal adsorbed (mg g−1 or mmol g−1) at equilibrium, Ce
is the equilibrium concentration of the metal (mg L−1 or mmol L−1), KF is the Freundlich
constant (mg g−1 or mmol g−1), and 1/n refers to the linearity of adsorption.

3. Results and Discussion
3.1. Effect of pH

Solution pH is an important parameter in the adsorption process of heavy metals
as it affects the speciation of the metal and the surface charge of the adsorbent and its
functional groups [1]. Figure 1 shows that at low pH, the removal efficiency of Pb2+ and
Cu2+ by PAM@MNP decreased. This can be attributed to a high concentration of H+

ions that compete with heavy metal ions on the adsorbent surface [23]. As the pH value
changed from 3 to 6, the removal efficiency increased from 28.2% to 95.7% for Pb2+ and
from 3.3% to 97.4% for Cu2+. The high removal at elevated pH can be attributed to possible
carboxyl group dissociation of PAM, which facilitates the electrostatic attraction between
the positively charged metals and −COO− [24,25]. The dissociation of carboxyl groups
is confirmed by the pKa values of maleic acid at 1.83 [26] and the pKa of acrylic acid at
4.25 [27]. Guan at al. [28] found that the high removal efficiency of Pb2+ using PAA-grafted
MNP at high pH is caused by the dissociation of carboxyl groups of PAA, which facilitates
the binding of Pb2+ ions. Paulino et al. [11] showed that, at pH 5.5, Pb2+ and Cu2+ ions may
form different types of complexes with carboxylic groups on PAA-coated chitosan-based
hydrogels with a magnetite core.
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Figure 1. Effect of pH on the removal efficiency of Pb2+ and Cu2+ by PAM@MNP. Adsorbent dose:
0.2 g L−1; initial Cu2+ and Pb2+ concentration: 10 mg L−1; temperature: 20 ◦C; contact time: 24 h.

However, under alkaline conditions, possible precipitation of cations as hydroxides
may take place in the solution or on the nanoparticle surfaces. Therefore, adsorption
cannot be considered the only mechanism for the removal of heavy metals. Several studies
have demonstrated that at pH > 6, Pb2+ removal occurs via precipitation as lead hydrox-
ide [29–31]. Cu2+ exists as free ions in the water at pH < 6. Its precipitation as copper
hydroxide occurs at pH 6.5 [32,33]. Based on this, the pH was set to 6 for isotherm and
kinetic studies to avoid the effect of precipitation.

3.2. Metals Adsorption Kinetics and Isotherms

The kinetics experiments were carried out at pH 6. The experimental results shown
in Figure 2 suggested that the sorption equilibrium was achieved after 60 min for both
metals with a removal efficiency >90% (not shown here). The adsorption rate was predicted
by applying the kinetics models. The adsorption kinetic data could be fitted better to the
pseudo-first-order kinetic model, as shown in Figure 2 and Table 1 (R2 = 0.95 and 0.99 for
Pb2+ and Cu2+, respectively). This indicates that the mechanism of adsorption at the applied
concentration of heavy metals might have been driven by electrostatic attraction forces
between the positively charged metal ions and the negatively charged PAM@MNP [34].
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Figure 2. Adsorption kinetics of Pb2+ and Cu2+ (a) in mg g−1 and (b) in mmol g−1 onto PAM@MNP 
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Figure 2. Adsorption kinetics of Pb2+ and Cu2+ (a) in mg g−1 and (b) in mmol g−1 onto PAM@MNP
fitted to pseudo-first-order and pseudo-second-order models. Adsorbent concentration: 0.2 g L−1;
initial metal concentration: 10 mg L−1; pH: 6; temperature: 20 ◦C.

Table 1. Parameters of pseudo-first-order and pseudo-second-order kinetic models for Pb2+ and Cu2+

adsorption onto PAM@MNP.

Kinetic Model Parameter Metal

Pb2+ Cu2+

Pseudo-first-order qe (mg g−1); (mmol g−1) 46.76; 0.22 46.98; 0.73
k1 (min−1) 0.03 0.05

R2 0.95 0.99
Pseudo-second-order qe (mg g−1); (mmol g−1) 51.89; 0.23 50.11; 0.79

k2 (g mg−1 min−1); (g mmol−1 min−1) 6.99 × 10−4; 0.15 1.45 × 10−3; 0.09
h (mg g−1 min−1); (mmol g−1 min−1) 1.9; 8.68 × 10−3 3.6; 0.06

R2 0.91 0.97

The adsorption isotherms of Pb2+ and Cu2+ onto PAM@MNP are shown in Figure 3.
The Langmuir model shows better fitting for the isotherms compared to the Freundlich
model (R2 = 0.92 for both metals; Table 2). The Langmuir adsorption capacity (qm, mono-
layer adsorption coverage) for Pb2+ and Cu2+ is 518.68 mg g−1 and 179.81 mg g−1, respec-
tively, which corresponds to 2.50 mmol g−1 for Pb2+ and 2.82 mmol g−1 for Cu2+ (Figure 3b).
The results indicate that the surface of the adsorbent is homogenous in nature, and all
binding sites were uniformly occupied by metal ions until a monolayer of heavy metal ions
developed on the surface of the adsorbent [35]. Pb2+ and Cu2+ ions were almost completely
removed (>96%) for initial concentrations up to 70 mg L−1 and 30 mg L−1, respectively
(not shown here). The reason behind a lower initial concentration for the Cu2+ metal was
to avoid the effect of precipitation, which is enhanced at higher initial concentrations of
the metal [36]. However, the adsorption results in mmol g−1 are higher for Cu2+ than for
Pb2+ which indicates that the precipitation of copper hydroxide on the surface might still
be possible even at low concentrations at the applied pH value of 6 [37]. The high adsorbed
amount for both metals can be attributed to the different forms of carboxyl groups such as
−COOH and −COO− contained in PAM@MNP at pH 6 [18]. We assume that these groups
are involved in the formation of surface complexes with Pb2+ and Cu2+ [16,38,39]. The role
of −COOH groups in the adsorption process has been reported for PAA-coated magnetite
used as an adsorbent for Pb2+ [28,39] and Cu2+ ions [11,40]. Protons on −COOH groups
can serve as exchangeable ions [38] and upon dissociation, the −COO− groups provide
binding sites for heavy metals cations.
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Figure 3. Langmuir and Freundlich adsorption isotherm models (a) in mg g−1 and (b) in mmol g−1

for the adsorption of Pb2+ and Cu2+ onto PAM@MNP. Symbols represent the experimental data.
Initial concentration: 0.5–70 mg L−1; adsorbent concentration: 0.2 g L−1; pH: 6; temperature: 20 ◦C;
contact time: 24 h.

Table 2. Langmuir and Freundlich isotherm parameters for the adsorption of Pb2+ and Cu2+

onto PAM@MNP.

Isotherm Parameter Metal

Pb2+ Cu2+

Langmuir qm (mg g−1); (mmol g−1) 518.68; 2.50 179.81; 2.82
KL (L mg−1); (L mmol−1) 0.67; 138.06 0.64; 40.99

R2 0.92 0.92
Freundlich KF (mg g−1); (mmol g−1) 186.54; 23.18 61.27; 9.63

n 1.62; 1.62 1.80; 1.80
R2 0.91 0.86

The calculated Langmuir adsorption capacity of PAM@MNP for Pb2+ and Cu2+ metals
is much higher than some reported values for MNP coated with comparable coating materi-
als. As the amount of PAM coating was about 1 mmol/g, given in −COOH equivalent [18],
the 2–3 times higher amounts of Me2+ adsorbed indicate surface precipitation or adsorption
on MNP.

4. Conclusions

In this study, we investigated PAM@MNP as a new adsorbent for the high removal
efficiency of heavy metals from contaminated water. The achieved high adsorption of
Pb2+ and Cu2+ on PAM@MNP was attributed to a PAM coating. In comparison to the
frequently used PAA coating, PAM affixes better to MNP by forming metal−carboxylate
complexes at oxide/electrolyte interfaces, which enhances the physicochemical stability
and regeneration potential of MNP. The adsorption of Pb2+ and Cu2+ onto PAM@MNP was
fast and efficient. PAM@MNP showed >90% removal efficiency in 60 min. and Langmuir
adsorption capacities of 518.68 mg g−1 and 179.81 mg g−1 for Pb2+ and Cu2+, respectively.
The findings provide evidence of the suitability of the PAM@MNP application for the
removal of Pb2+ and Cu2+ from water. However, PAM@MNP regeneration and separation
from the aqueous solution still need to be elucidated in further steps.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/colloids7010005/s1, Figure S1: TEM images for (a) bare MNP and
(b) PAM-coated MNPs; Figure S2: pH-dependent surface charging of bare and PAM-coated MNPs.
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