001005319 001__ 1005319
001005319 005__ 20230929112517.0
001005319 0247_ $$2doi$$a10.1016/j.actamat.2023.118672
001005319 0247_ $$2ISSN$$a1359-6454
001005319 0247_ $$2ISSN$$a1873-2453
001005319 0247_ $$2Handle$$a2128/34216
001005319 0247_ $$2WOS$$aWOS:000925224800001
001005319 037__ $$aFZJ-2023-01428
001005319 041__ $$aEnglish
001005319 082__ $$a670
001005319 1001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b0$$eCorresponding author
001005319 245__ $$aRole of heterophase interfaces on local coercivity mechanisms in the magnetic Al0.3CoFeNi complex concentrated alloy
001005319 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001005319 3367_ $$2DRIVER$$aarticle
001005319 3367_ $$2DataCite$$aOutput Types/Journal article
001005319 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680089305_6282
001005319 3367_ $$2BibTeX$$aARTICLE
001005319 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005319 3367_ $$00$$2EndNote$$aJournal Article
001005319 520__ $$aMicrostructural features across different length scales have a profound influence on the coercivity of magnetic alloys. Whereas the role of homophase boundaries on the pinning of magnetic domain walls is well established, the influence of heterophase interfaces on domain wall motion is complex and poorly understood. Here, we use state-of-the-art electron microscopy techniques to show that the magnetization reversal process in an Al0.3CoFeNi magnetic complex concentrated alloy (CCA), which is responsible for its coercivity, changes dramatically from a nucleation-type mechanism in the FCC+L12 state of the CCA, with a domain wall width of 171 nm, to a pinning type mechanism in the microstructure with colonies of FCC/L12 nanorods embedded in a BCC/B2 matrix, with a domain wall width of 35 nm. Our work reveals that heterophase FCC/BCC interfaces have a much stronger effect on coercivity than isostructural chemically ordered/disordered interfaces and provides a powerful guide to the rational design of microstructure to tune magnetic properties in both complex concentrated alloys and conventional magnetic alloys.
001005319 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001005319 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x1
001005319 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005319 7001_ $$00000-0003-2544-0910$$aVenkataraman, Nithin B.$$b1
001005319 7001_ $$00000-0002-9244-1975$$aChaudhary, Varun$$b2
001005319 7001_ $$00000-0001-5992-0299$$aDasari, Sriswaroop$$b3
001005319 7001_ $$0P:(DE-Juel1)172928$$aDenneulin, Thibaud$$b4
001005319 7001_ $$0P:(DE-HGF)0$$aRamanujan, R. V.$$b5
001005319 7001_ $$00000-0003-4703-7030$$aBanerjee, Rajarshi$$b6
001005319 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b7$$ufzj
001005319 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2023.118672$$gVol. 246, p. 118672 -$$p118672 -$$tActa materialia$$v246$$x1359-6454$$y2023
001005319 8564_ $$uhttps://juser.fz-juelich.de/record/1005319/files/1-s2.0-S1359645423000046-main.pdf$$yOpenAccess
001005319 8564_ $$uhttps://juser.fz-juelich.de/record/1005319/files/Role%20of%20heterophase.pdf$$yOpenAccess
001005319 8767_ $$d2023-03-09$$eHybrid-OA$$jZahlung angewiesen$$zKostenstelle erfragt
001005319 909CO $$ooai:juser.fz-juelich.de:1005319$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001005319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b0$$kFZJ
001005319 9101_ $$0I:(DE-588b)5008462-8$$60000-0003-2544-0910$$aForschungszentrum Jülich$$b1$$kFZJ
001005319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172928$$aForschungszentrum Jülich$$b4$$kFZJ
001005319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
001005319 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001005319 9141_ $$y2023
001005319 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005319 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001005319 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005319 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001005319 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005319 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001005319 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001005319 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-26
001005319 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-26
001005319 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2022$$d2023-08-26
001005319 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001005319 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001005319 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
001005319 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
001005319 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2022$$d2023-08-26
001005319 920__ $$lyes
001005319 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001005319 980__ $$ajournal
001005319 980__ $$aVDB
001005319 980__ $$aUNRESTRICTED
001005319 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001005319 980__ $$aAPC
001005319 9801_ $$aAPC
001005319 9801_ $$aFullTexts