001     1005319
005     20230929112517.0
024 7 _ |a 10.1016/j.actamat.2023.118672
|2 doi
024 7 _ |a 1359-6454
|2 ISSN
024 7 _ |a 1873-2453
|2 ISSN
024 7 _ |a 2128/34216
|2 Handle
024 7 _ |a WOS:000925224800001
|2 WOS
037 _ _ |a FZJ-2023-01428
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Kovács, András
|0 P:(DE-Juel1)144926
|b 0
|e Corresponding author
245 _ _ |a Role of heterophase interfaces on local coercivity mechanisms in the magnetic Al0.3CoFeNi complex concentrated alloy
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680089305_6282
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Microstructural features across different length scales have a profound influence on the coercivity of magnetic alloys. Whereas the role of homophase boundaries on the pinning of magnetic domain walls is well established, the influence of heterophase interfaces on domain wall motion is complex and poorly understood. Here, we use state-of-the-art electron microscopy techniques to show that the magnetization reversal process in an Al0.3CoFeNi magnetic complex concentrated alloy (CCA), which is responsible for its coercivity, changes dramatically from a nucleation-type mechanism in the FCC+L12 state of the CCA, with a domain wall width of 171 nm, to a pinning type mechanism in the microstructure with colonies of FCC/L12 nanorods embedded in a BCC/B2 matrix, with a domain wall width of 35 nm. Our work reveals that heterophase FCC/BCC interfaces have a much stronger effect on coercivity than isostructural chemically ordered/disordered interfaces and provides a powerful guide to the rational design of microstructure to tune magnetic properties in both complex concentrated alloys and conventional magnetic alloys.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|f ERC-2019-SyG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Venkataraman, Nithin B.
|0 0000-0003-2544-0910
|b 1
700 1 _ |a Chaudhary, Varun
|0 0000-0002-9244-1975
|b 2
700 1 _ |a Dasari, Sriswaroop
|0 0000-0001-5992-0299
|b 3
700 1 _ |a Denneulin, Thibaud
|0 P:(DE-Juel1)172928
|b 4
700 1 _ |a Ramanujan, R. V.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Banerjee, Rajarshi
|0 0000-0003-4703-7030
|b 6
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 7
|u fzj
773 _ _ |a 10.1016/j.actamat.2023.118672
|g Vol. 246, p. 118672 -
|0 PERI:(DE-600)2014621-8
|p 118672 -
|t Acta materialia
|v 246
|y 2023
|x 1359-6454
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1005319/files/1-s2.0-S1359645423000046-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1005319/files/Role%20of%20heterophase.pdf
909 C O |o oai:juser.fz-juelich.de:1005319
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144926
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 0000-0003-2544-0910
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA MATER : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA MATER : 2022
|d 2023-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21