001     1005325
005     20231027114357.0
024 7 _ |a 10.1103/PhysRevB.107.085132
|2 doi
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/34222
|2 Handle
024 7 _ |a WOS:000944014500003
|2 WOS
037 _ _ |a FZJ-2023-01434
082 _ _ |a 530
100 1 _ |a Rost, Stefan
|0 P:(DE-Juel1)171929
|b 0
245 _ _ |a Efficient calculation of k -integrated electron energy loss spectra: Application to monolayers of MoS 2 ,   hBN , and graphene
260 _ _ |a Woodbury, NY
|c 2023
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680242443_32318
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The theoretical scattering cross section of electron energy loss spectroscopy (EELS) is essentially given by $-\text{Im}\,\varepsilon^{-1}(\mathbf{k},\omega)$ with the energy loss $\hbar\omega$ and the momentum transfer $\hbar\mathbf{k}$. The macroscopic dielectric function $\varepsilon(\mathbf{k},\omega)$ can be calculated from first principles using time-dependent density-functional theory.However, experimental EELS measurements have a finite $\mathbf{k}$ resolution or, when operated in spatial resolution mode, yield a $\mathbf{k}$-integrated loss spectrum, which deviates significantly from EEL spectra calculated for specific $\mathbf{k}$ momenta. On the other hand, integrating the theoretical spectra over $\mathbf{k}$ is complicated by the fact that the integrand varies over several (typically six) orders of magnitude around $k=0$.In this article, we present a stable technique for integrating EEL spectra over an adjustable range of momentum transfers. The important region around $k=0$, where the integrand is nearly divergent, is treated partially analytically, allowing an analytic integration of the near-divergence. The scheme is applied to three prototypical two-dimensional systems: monolayers of MoS$_2$ (semiconductor), hexagonal BN (insulator), and graphene (semimetal).Here, we are confronted with the added difficulty that the long-range Coulomb interaction leads to a very slow supercell (vacuum size) convergence. We address this difficulty by employing an extrapolation scheme, enabling an efficient reduction of the supercell size and thus a considerable speed-up in computation time. The calculated $\mathbf{k}$-integrated spectra are in very favourable agreement with experimental EEL spectra.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 1
700 1 _ |a Friedrich, Christoph
|0 P:(DE-Juel1)130644
|b 2
|e Corresponding author
773 _ _ |a 10.1103/PhysRevB.107.085132
|g Vol. 107, no. 8, p. 085132
|0 PERI:(DE-600)2844160-6
|n 8
|p 085132
|t Physical review / B
|v 107
|y 2023
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/1005325/files/PhysRevB.107.085132.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005325
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130644
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2022-11-11
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21