Hauptseite > Publikationsdatenbank > Efficient calculation of k -integrated electron energy loss spectra: Application to monolayers of MoS 2 , hBN , and graphene > print |
001 | 1005325 | ||
005 | 20231027114357.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.107.085132 |2 doi |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9977 |2 ISSN |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/34222 |2 Handle |
024 | 7 | _ | |a WOS:000944014500003 |2 WOS |
037 | _ | _ | |a FZJ-2023-01434 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Rost, Stefan |0 P:(DE-Juel1)171929 |b 0 |
245 | _ | _ | |a Efficient calculation of k -integrated electron energy loss spectra: Application to monolayers of MoS 2 , hBN , and graphene |
260 | _ | _ | |a Woodbury, NY |c 2023 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1680242443_32318 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The theoretical scattering cross section of electron energy loss spectroscopy (EELS) is essentially given by $-\text{Im}\,\varepsilon^{-1}(\mathbf{k},\omega)$ with the energy loss $\hbar\omega$ and the momentum transfer $\hbar\mathbf{k}$. The macroscopic dielectric function $\varepsilon(\mathbf{k},\omega)$ can be calculated from first principles using time-dependent density-functional theory.However, experimental EELS measurements have a finite $\mathbf{k}$ resolution or, when operated in spatial resolution mode, yield a $\mathbf{k}$-integrated loss spectrum, which deviates significantly from EEL spectra calculated for specific $\mathbf{k}$ momenta. On the other hand, integrating the theoretical spectra over $\mathbf{k}$ is complicated by the fact that the integrand varies over several (typically six) orders of magnitude around $k=0$.In this article, we present a stable technique for integrating EEL spectra over an adjustable range of momentum transfers. The important region around $k=0$, where the integrand is nearly divergent, is treated partially analytically, allowing an analytic integration of the near-divergence. The scheme is applied to three prototypical two-dimensional systems: monolayers of MoS$_2$ (semiconductor), hexagonal BN (insulator), and graphene (semimetal).Here, we are confronted with the added difficulty that the long-range Coulomb interaction leads to a very slow supercell (vacuum size) convergence. We address this difficulty by employing an extrapolation scheme, enabling an efficient reduction of the supercell size and thus a considerable speed-up in computation time. The calculated $\mathbf{k}$-integrated spectra are in very favourable agreement with experimental EEL spectra. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 1 |
700 | 1 | _ | |a Friedrich, Christoph |0 P:(DE-Juel1)130644 |b 2 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevB.107.085132 |g Vol. 107, no. 8, p. 085132 |0 PERI:(DE-600)2844160-6 |n 8 |p 085132 |t Physical review / B |v 107 |y 2023 |x 2469-9950 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1005325/files/PhysRevB.107.085132.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1005325 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130548 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130644 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2022-11-11 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-11 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|