001005328 001__ 1005328
001005328 005__ 20231027114357.0
001005328 0247_ $$2doi$$a10.1002/adfm.202213943
001005328 0247_ $$2ISSN$$a1616-301X
001005328 0247_ $$2ISSN$$a1057-9257
001005328 0247_ $$2ISSN$$a1099-0712
001005328 0247_ $$2ISSN$$a1616-3028
001005328 0247_ $$2Handle$$a2128/34547
001005328 0247_ $$2WOS$$aWOS:000940728600001
001005328 037__ $$aFZJ-2023-01437
001005328 082__ $$a530
001005328 1001_ $$0P:(DE-Juel1)194550$$aSchön, Daniel$$b0
001005328 245__ $$aSpatio‐Temporal Correlations in Memristive Crossbar Arrays due to Thermal Effects
001005328 260__ $$aWeinheim$$bWiley-VCH$$c2023
001005328 3367_ $$2DRIVER$$aarticle
001005328 3367_ $$2DataCite$$aOutput Types/Journal article
001005328 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687174681_9014
001005328 3367_ $$2BibTeX$$aARTICLE
001005328 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005328 3367_ $$00$$2EndNote$$aJournal Article
001005328 520__ $$aMemristive valence change memory (VCM) cells show a strong non-linearity in the switching kinetics which is induced by a temperature increase. In this respect, thermal crosstalk can be observed in highly integrated crossbar arrays which may impact the resistance state of adjacent devices. Additionally, due to the thermal capacitance, a VCM cell can remain thermally active after a pulse and thus influence the temperature conditions for a possible subsequent pulse. By using a finite element model of a crossbar array, it is shown that spatio-temporal thermal correlations can occur and are capable of affecting the resistive state of adjacent cells. This new functional behavior can potentially be used for future neuromorphic computing applications.
001005328 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001005328 536__ $$0G:(DE-82)BMBF-16ME0399$$aBMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)$$cBMBF-16ME0399$$x1
001005328 536__ $$0G:(DE-82)BMBF-16ME0398K$$aBMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)$$cBMBF-16ME0398K$$x2
001005328 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x3
001005328 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005328 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b1$$eCorresponding author
001005328 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202213943$$gp. 2213943 -$$n22$$p2213943 -$$tAdvanced functional materials$$v33$$x1616-301X$$y2023
001005328 8564_ $$uhttps://juser.fz-juelich.de/record/1005328/files/Adv%20Funct%20Materials%20-%202023%20-%20Sch%20n%20-%20Spatio%E2%80%90Temporal%20Correlations%20in%20Memristive%20Crossbar%20Arrays%20due%20to%20Thermal%20Effects.pdf$$yOpenAccess
001005328 8767_ $$d2023-03-09$$eHybrid-OA$$jDEAL
001005328 909CO $$ooai:juser.fz-juelich.de:1005328$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001005328 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194550$$aForschungszentrum Jülich$$b0$$kFZJ
001005328 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b1$$kFZJ
001005328 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001005328 9141_ $$y2023
001005328 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005328 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001005328 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001005328 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-15
001005328 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005328 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-15$$wger
001005328 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001005328 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005328 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001005328 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001005328 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001005328 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001005328 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-24
001005328 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-24
001005328 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2022$$d2023-10-24
001005328 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
001005328 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
001005328 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2022$$d2023-10-24
001005328 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
001005328 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001005328 980__ $$ajournal
001005328 980__ $$aVDB
001005328 980__ $$aUNRESTRICTED
001005328 980__ $$aI:(DE-Juel1)PGI-7-20110106
001005328 980__ $$aI:(DE-82)080009_20140620
001005328 980__ $$aAPC
001005328 9801_ $$aAPC
001005328 9801_ $$aFullTexts