001005331 001__ 1005331
001005331 005__ 20250821202241.0
001005331 0247_ $$2doi$$a10.1002/aenm.202300329
001005331 0247_ $$2ISSN$$a1614-6832
001005331 0247_ $$2ISSN$$a1614-6840
001005331 0247_ $$2Handle$$a2128/34432
001005331 0247_ $$2WOS$$aWOS:000941150600001
001005331 037__ $$aFZJ-2023-01440
001005331 082__ $$a050
001005331 1001_ $$0P:(DE-Juel1)180703$$aHartnagel, Paula$$b0
001005331 245__ $$aComparing Methods of Characterizing Energetic Disorder in Organic Solar Cells
001005331 260__ $$aWeinheim$$bWiley-VCH$$c2023
001005331 3367_ $$2DRIVER$$aarticle
001005331 3367_ $$2DataCite$$aOutput Types/Journal article
001005331 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755761480_4771
001005331 3367_ $$2BibTeX$$aARTICLE
001005331 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005331 3367_ $$00$$2EndNote$$aJournal Article
001005331 520__ $$aThe energetic disorder has been known for decades to limit the performance of structurally disordered semiconductors such as amorphous silicon and organic semiconductors. However, in the past years, high-performance organic solar cells have emerged showing a continuously reduced amount of energetic disorder. While searching for future high-efficiency material systems, it is therefore important to correctly characterize this energetic disorder. While there are several techniques in the literature, the most common approaches to probe the density of defect states are using optical excitation as in external quantum efficiency measurements, or sequential filling of the tail states by applying an external voltage as in admittance spectroscopy. A metanalysis of available literature, as well as the experiments using four characterization techniques on two material systems, reveal that electrical, voltage-dependent measurements frequently yield higher values of energetic disorder than optical measurements. With drift-diffusion simulations, it is demonstrated that the approaches probe different energy ranges of the subband-gap density of states. The limitations of the techniques are further explored and it is found that extraction of information from a capacitance-voltage curve can be inhibited by internal series resistance. Thereby, the discrepancies between measurement techniques with sensitivity to different energy ranges and electronic parameters are explained.
001005331 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001005331 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005331 7001_ $$0P:(DE-Juel1)180551$$aRavi Shankar, Sandheep$$b1$$ufzj
001005331 7001_ $$0P:(DE-Juel1)159235$$aKlingebiel, Benjamin$$b2
001005331 7001_ $$0P:(DE-Juel1)132799$$aThimm, Oliver$$b3
001005331 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b4$$eCorresponding author
001005331 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202300329$$gp. 2300329 -$$n15$$p2300329$$tAdvanced energy materials$$v13$$x1614-6832$$y2023
001005331 8564_ $$uhttps://juser.fz-juelich.de/record/1005331/files/Advanced%20Energy%20Materials%20-%202023%20-%20Hartnagel%20-%20Comparing%20Methods%20of%20Characterizing%20Energetic%20Disorder%20in%20Organic%20Solar.pdf$$yOpenAccess
001005331 8767_ $$d2023-03-09$$eHybrid-OA$$jDEAL
001005331 909CO $$ooai:juser.fz-juelich.de:1005331$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001005331 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180703$$aForschungszentrum Jülich$$b0$$kFZJ
001005331 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180551$$aForschungszentrum Jülich$$b1$$kFZJ
001005331 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159235$$aForschungszentrum Jülich$$b2$$kFZJ
001005331 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132799$$aForschungszentrum Jülich$$b3$$kFZJ
001005331 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b4$$kFZJ
001005331 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001005331 9141_ $$y2023
001005331 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005331 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001005331 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001005331 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005331 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-12$$wger
001005331 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001005331 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005331 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001005331 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001005331 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001005331 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001005331 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001005331 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001005331 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2022$$d2023-10-26
001005331 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001005331 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001005331 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2022$$d2023-10-26
001005331 920__ $$lyes
001005331 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
001005331 980__ $$ajournal
001005331 980__ $$aVDB
001005331 980__ $$aI:(DE-Juel1)IEK-5-20101013
001005331 980__ $$aAPC
001005331 980__ $$aUNRESTRICTED
001005331 9801_ $$aAPC
001005331 9801_ $$aFullTexts
001005331 981__ $$aI:(DE-Juel1)IMD-3-20101013