001005333 001__ 1005333
001005333 005__ 20240226075405.0
001005333 0247_ $$2doi$$a10.1134/S263482762260013X
001005333 0247_ $$2ISSN$$a2634-8276
001005333 0247_ $$2ISSN$$a2079-9780
001005333 0247_ $$2ISSN$$a2079-9799
001005333 0247_ $$2ISSN$$a2634-8284
001005333 0247_ $$2Handle$$a2128/34190
001005333 037__ $$aFZJ-2023-01442
001005333 1001_ $$0P:(DE-Juel1)187024$$aMurmiliuk, Anastasiia$$b0$$eCorresponding author
001005333 245__ $$aComprehensive Multidimensional Characterization of Polyelectrolytes and Interpolyelectrolyte Complexes in Aqueous Solutions
001005333 260__ $$a[Road Town, Tortola]$$bPleiades Publishing, Ltd$$c2022
001005333 3367_ $$2DRIVER$$aarticle
001005333 3367_ $$2DataCite$$aOutput Types/Journal article
001005333 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679566751_11599
001005333 3367_ $$2BibTeX$$aARTICLE
001005333 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005333 3367_ $$00$$2EndNote$$aJournal Article
001005333 520__ $$aIn this paper we give the overview of our latest results on the complexation between polyelectrolytes and oppositely charged low-molar mass species, proteins, homopolymers and block copolymers. First, we review the results on the study of the interaction of polythiophene-based polycations with phosphonium and ammonium pendants and their complexation with negatively charged multivalent species followed by fluorescence quenching. We proved that multivalent solutes bind to polyelectrolyte stronger than to previously studied polythiophene, thus, allowing for their application as luminescence sensors. Secondly, we investigated the co-assembly of polyanion with double hydrophilic block copolymer composed of polycationic block and neutral hydrophilic block and followed the complex formation by quenching of fluorescence of the indicator attached to the end of polyanion chain. We discovered that the formed interpolyelectrolyte (IPEC) core of core/shell micelles remains dynamical even after equilibrium was reached thus making such systems suitable materials for targeted delivery of multivalent species. In addition, the formation of micelles with fluid cores was observed as a result of self-assembly of di- and triblock polyelectrolytes containing a hydrophobic block with low glass transition temperature and a positively charged block. We proved their ability to encapsulate and release hydrophobic species from the soft core upon dilution. Moreover, we confirmed their ability to complex with multivalent negatively charged species. The morphology of the formed complex strongly depends on ionic strength: the aggregates formed by micelles bonded at the periphery disrupt with increasing salt concentration and a part of multivalent ions releases into solution. Finally, the multilayered nanoparticles with both soft hydrophobic and IPEC layers were designed by co-assembly between core/shell micelles with a soft core and a positively charged shell, and block polyelectrolyte composed of polyanion and neutral hydrophilic blocks. We showed that the morphology of the particles and the charge of IPEC layer of such multicompartment nanostructures can be controlled by the ratio of oppositely charged monomeric units.
001005333 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001005333 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001005333 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005333 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
001005333 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
001005333 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
001005333 7001_ $$0P:(DE-HGF)0$$aHladysh, Sviatoslav$$b1
001005333 7001_ $$0P:(DE-HGF)0$$aFilippov, Sergey K.$$b2$$eCorresponding author
001005333 7001_ $$0P:(DE-HGF)0$$aStepanek, Miroslav$$b3
001005333 773__ $$0PERI:(DE-600)3102497-X$$a10.1134/S263482762260013X$$gVol. 12, no. 3, p. 163 - 177$$n3$$p163 - 177$$tReviews and advances in chemistry$$v12$$x2634-8276$$y2022
001005333 8564_ $$uhttps://juser.fz-juelich.de/record/1005333/files/S263482762260013X.pdf
001005333 8564_ $$uhttps://juser.fz-juelich.de/record/1005333/files/murmiliuk_Complexes_final_revised_Murmiliuk.pdf$$yOpenAccess
001005333 909CO $$ooai:juser.fz-juelich.de:1005333$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
001005333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187024$$aForschungszentrum Jülich$$b0$$kFZJ
001005333 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001005333 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001005333 9141_ $$y2023
001005333 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005333 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
001005333 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-15$$wger
001005333 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
001005333 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x1
001005333 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
001005333 980__ $$ajournal
001005333 980__ $$aVDB
001005333 980__ $$aUNRESTRICTED
001005333 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001005333 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001005333 980__ $$aI:(DE-588b)4597118-3
001005333 9801_ $$aFullTexts