001     1005333
005     20240226075405.0
024 7 _ |a 10.1134/S263482762260013X
|2 doi
024 7 _ |a 2634-8276
|2 ISSN
024 7 _ |a 2079-9780
|2 ISSN
024 7 _ |a 2079-9799
|2 ISSN
024 7 _ |a 2634-8284
|2 ISSN
024 7 _ |a 2128/34190
|2 Handle
037 _ _ |a FZJ-2023-01442
100 1 _ |a Murmiliuk, Anastasiia
|0 P:(DE-Juel1)187024
|b 0
|e Corresponding author
245 _ _ |a Comprehensive Multidimensional Characterization of Polyelectrolytes and Interpolyelectrolyte Complexes in Aqueous Solutions
260 _ _ |a [Road Town, Tortola]
|c 2022
|b Pleiades Publishing, Ltd
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1679566751_11599
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper we give the overview of our latest results on the complexation between polyelectrolytes and oppositely charged low-molar mass species, proteins, homopolymers and block copolymers. First, we review the results on the study of the interaction of polythiophene-based polycations with phosphonium and ammonium pendants and their complexation with negatively charged multivalent species followed by fluorescence quenching. We proved that multivalent solutes bind to polyelectrolyte stronger than to previously studied polythiophene, thus, allowing for their application as luminescence sensors. Secondly, we investigated the co-assembly of polyanion with double hydrophilic block copolymer composed of polycationic block and neutral hydrophilic block and followed the complex formation by quenching of fluorescence of the indicator attached to the end of polyanion chain. We discovered that the formed interpolyelectrolyte (IPEC) core of core/shell micelles remains dynamical even after equilibrium was reached thus making such systems suitable materials for targeted delivery of multivalent species. In addition, the formation of micelles with fluid cores was observed as a result of self-assembly of di- and triblock polyelectrolytes containing a hydrophobic block with low glass transition temperature and a positively charged block. We proved their ability to encapsulate and release hydrophobic species from the soft core upon dilution. Moreover, we confirmed their ability to complex with multivalent negatively charged species. The morphology of the formed complex strongly depends on ionic strength: the aggregates formed by micelles bonded at the periphery disrupt with increasing salt concentration and a part of multivalent ions releases into solution. Finally, the multilayered nanoparticles with both soft hydrophobic and IPEC layers were designed by co-assembly between core/shell micelles with a soft core and a positively charged shell, and block polyelectrolyte composed of polyanion and neutral hydrophilic blocks. We showed that the morphology of the particles and the charge of IPEC layer of such multicompartment nanostructures can be controlled by the ratio of oppositely charged monomeric units.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Hladysh, Sviatoslav
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Filippov, Sergey K.
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Stepanek, Miroslav
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1134/S263482762260013X
|g Vol. 12, no. 3, p. 163 - 177
|0 PERI:(DE-600)3102497-X
|n 3
|p 163 - 177
|t Reviews and advances in chemistry
|v 12
|y 2022
|x 2634-8276
856 4 _ |u https://juser.fz-juelich.de/record/1005333/files/S263482762260013X.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1005333/files/murmiliuk_Complexes_final_revised_Murmiliuk.pdf
909 C O |o oai:juser.fz-juelich.de:1005333
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187024
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-15
|w ger
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 1
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21