001005339 001__ 1005339
001005339 005__ 20240131202657.0
001005339 0247_ $$2doi$$a10.1093/micmic/ozad021
001005339 0247_ $$2ISSN$$a1079-8501
001005339 0247_ $$2ISSN$$a1431-9276
001005339 0247_ $$2ISSN$$a1435-8115
001005339 0247_ $$2Handle$$a2128/34546
001005339 0247_ $$2WOS$$aWOS:001005190700012
001005339 037__ $$aFZJ-2023-01445
001005339 041__ $$aEnglish
001005339 082__ $$a500
001005339 1001_ $$0P:(DE-Juel1)184644$$aBangun, Arya$$b0$$eCorresponding author$$ufzj
001005339 245__ $$aWigner Distribution Deconvolution Adaptation for Live Ptychography Reconstruction
001005339 260__ $$aNew York, NY$$bCambridge University Press$$c2023
001005339 3367_ $$2DRIVER$$aarticle
001005339 3367_ $$2DataCite$$aOutput Types/Journal article
001005339 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706693074_5584
001005339 3367_ $$2BibTeX$$aARTICLE
001005339 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005339 3367_ $$00$$2EndNote$$aJournal Article
001005339 520__ $$aWe propose a modification of Wigner distribution deconvolution (WDD) to support live processing ptychography. Live processing allows to reconstruct and display the specimen transmission function gradually while diffraction patterns are acquired. For this purpose, we reformulate WDD and apply a dimensionality reduction technique that reduces memory consumption and increases processing speed. We show numerically that this approach maintains the reconstruction quality of specimen transfer functions as well as reduces computational complexity during acquisition processes. Although we only present the reconstruction for scanning transmission electron microscopy datasets, in general, the live processing algorithm we present in this paper can be applied to real-time ptychographic reconstruction for different fields of application.
001005339 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001005339 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001005339 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005339 7001_ $$0P:(DE-Juel1)156619$$aBaumeister, Paul F$$b1
001005339 7001_ $$0P:(DE-Juel1)174151$$aClausen, Alexander$$b2
001005339 7001_ $$0P:(DE-Juel1)171370$$aWeber, Dieter$$b3
001005339 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E$$b4
001005339 773__ $$0PERI:(DE-600)1481716-0$$a10.1093/micmic/ozad021$$gp. ozad021$$n3$$p994–1008$$tMicroscopy and microanalysis$$v29$$x1079-8501$$y2023
001005339 8564_ $$uhttps://juser.fz-juelich.de/record/1005339/files/Invoice_E16024168.pdf
001005339 8564_ $$uhttps://juser.fz-juelich.de/record/1005339/files/ozad021.pdf$$yOpenAccess
001005339 8767_ $$8E16024168$$92023-02-09$$a1200196038$$d2023-08-30$$eHybrid-OA$$jZahlung erfolgt
001005339 909CO $$ooai:juser.fz-juelich.de:1005339$$popenaire$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access
001005339 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184644$$aForschungszentrum Jülich$$b0$$kFZJ
001005339 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156619$$aForschungszentrum Jülich$$b1$$kFZJ
001005339 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174151$$aForschungszentrum Jülich$$b2$$kFZJ
001005339 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171370$$aForschungszentrum Jülich$$b3$$kFZJ
001005339 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
001005339 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001005339 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001005339 9141_ $$y2023
001005339 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005339 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001005339 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08
001005339 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-08
001005339 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005339 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08
001005339 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005339 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-22$$wger
001005339 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROSC MICROANAL : 2022$$d2023-08-22
001005339 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
001005339 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
001005339 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
001005339 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
001005339 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
001005339 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-22
001005339 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-22
001005339 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-22
001005339 920__ $$lyes
001005339 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001005339 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
001005339 980__ $$ajournal
001005339 980__ $$aVDB
001005339 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001005339 980__ $$aI:(DE-Juel1)JSC-20090406
001005339 980__ $$aAPC
001005339 980__ $$aUNRESTRICTED
001005339 9801_ $$aAPC
001005339 9801_ $$aFullTexts