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Abstract 
We propose a modification of Wigner distribution deconvolution (WDD) to support live processing ptychography. Live processing allows to 
reconstruct and display the specimen transmission function gradually while diffraction patterns are acquired. For this purpose, we reformulate 
WDD and apply a dimensionality reduction technique that reduces memory consumption and increases processing speed. We show 
numerically that this approach maintains the reconstruction quality of specimen transfer functions as well as reduces computational complexity 
during acquisition processes. Although we only present the reconstruction for scanning transmission electron microscopy datasets, in general, 
the live processing algorithm we present in this paper can be applied to real-time ptychographic reconstruction for different fields of application.
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Introduction
Four-dimensional scanning transmission electron microscopy 
(4D STEM) is an experimental modality where a wide range of 
computational methods can extract information on the speci
men and reduce the acquired data for human interaction 
(Ophus, 2019). The acquisition schema of 4D STEM is shown 
in Fig. 1. Acquiring such comprehensive data and applying 
computational analysis and reconstruction workflows allows 
observation of material properties by electron microscopy 
that are not accessible with simple detectors and signal pro
cessing methods (Ophus, 2019). Since it generates large 
amounts of data (Spurgeon et al., 2021), making algorithms 
and implementations efficient in their use of computer mem
ory and processing time requires special attention.

If a computational method to process the recorded data is 
only implemented for offline use, microscopists have to ac
quire data relying only on simple contrast methods or even 
without any feedback at all. An implementation for live pro
cessing, in contrast, allows interactive use of the microscope 
based on advanced computational contrast mechanisms, mon
itoring the acquisition process, evaluating data quality, or 
automatically controlling the instrument in a closed loop. 
This requires suitable interfaces to the microscope to receive 
a live data stream as well as implementations that are capable 
to process data gradually while they arrive (Nord et al., 2020).

Ptychography (Hoppe, 1969a, 1969b; Hoppe & Strube, 
1969) can be used to extract a quantitative object transmission 
function for a specimen using 4D STEM data. It takes advan
tage of information from local overlap of the illuminated re
gions. Recent years have seen a widespread increase in the 
development of ptychography algorithms by different ap
proaches, such as inspired by the classical alternating 

projection method, i.e., PIE reconstruction algorithm 
(Rodenburg & Faulkner, 2004; Maiden & Rodenburg, 
2009), other optimization-based approaches (Wen et al., 
2012; Bostan et al., 2018), as well as direct methods. 
Single-side band (SSB) (Rodenburg et al., 1993; Pennycook 
et al., 2015; Yang et al., 2015) and Wigner distribution decon
volution (WDD) (Rodenburg & Bates, 1992; Li et al., 2014; 
Yang et al., 2016) are examples of direct ptychography meth
ods that extract the relevant information in a sequential pro
cessing flow, as opposed to iterative methods that optimize 
the object transmission function in a loop over the input data.

With SSB as an example, Strauch et al. (2021b) showed pre
viously that direct, linear methods are particularly suitable for 
live processing since the result can always be expressed as the 
sum of partial results from processing subsets of the input 
data. However, reconstruction with SSB relies on the weak 
phase object approximation. Compared with SSB, WDD does 
not have this limitation (Yang et al., 2017). At the same time, 
the data reduction in WDD is a linear function of the input 
data like in SSB, meaning it is a good candidate for live ptychog
raphy. Yang et al. (2015) showed that segmented or pixelated 
detector geometries transfer a majority of the possible phase 
contrast for STEM with a focused probe at atomic resolution 
with 16 channels already. Strong binning is used as dimension
ality reduction method in Pelz et al. (2021) to reduce the pro
cessing time for SSB after an acquisition is completed.

Related Works
A real-time phase reconstruction approach based on inte
grated center of mass (COM) is proposed in Yu et al. 
(2021). That method does not require storing the entire 4D da
taset in memory and reconstructs the phase from strongly 
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reduced COM information instead of full diffraction patterns. 
The COM can be computed efficiently from diffraction data so 
that this algorithm can reconstruct large-scale data. The au
thors coined the real-time approach as riCOM.

Summary of Contributions
Here, we demonstrate live reconstruction using the eigenfunc
tions of a harmonic oscillator (HO) instead of binning as a 
base for dimensionality reduction. In addition to data reduction, 
this transformation can replace the Fourier transform in several 
steps of the WDD method while retaining a reconstruction that is 
very similar to a result without dimensionality reduction. 
Furthermore, by building on the matrix representation of the dis
crete Fourier transform, we can process the intensity data and re
construct the specimen transmission function gradually from 
subsets of the input data in a streaming fashion. As a benchmark, 
we compare the result of Live WDD with the implementation of 
WDD in PyPtychoSTEM (Pennycook & Hofer, 2021) as well as 
Live SSB (Strauch et al., 2021b).

The codes used and to reproduce the result in this paper are 
available at the URL below: https://github.com/Ptychography- 
4-0/LiveWDD

Notations
We provide notations used throughout this article. Vectors are 
written in bold small-cap letters x ∈ CL and matrices are written 
as a bold big-cap letter A ∈ CK×L for a complex field C and for a 
real field R. A matrix can also be written by indexing its elements

A = akℓ
( 􏼁

, where k ∈ [K], ℓ ∈ [L].

The set of integers is written as [N] : = {1, 2, . . . , N} and cal
ligraphic letters are used to define functions A : C→ C. 
Specifically, we denote the discrete two-dimensional 
Fourier transform by F . For both matrices and vectors, the 

notation ° is used to represent an element-wise product, also 
called Hadamard product. AT is used to denote the transpose 

of a matrix A. The notation vec : CN×N → CN2 
is an operator 

that vectorizes a matrix, and mat : CN2
→ CN×N constructs a 

matrix from a vector. The complex conjugate is indicated by 
a bar. For a matrix X, it is the element-wise conjugate. The 
convolution and Kronecker operator are denoted by ⊛ and 
⊗, respectively. The partial derivative is given by ∂, and ∇ is 
the nabla or vector differential operator.

Wigner Distribution Deconvolution
In this section, we introduce the matrix representation of the 
WDD method developed from its original formulation as in 
Rodenburg & Bates (1992) and an Open Source implementa
tion from Pennycook & Hofer (2021). In order to visualize the 
definition for different spaces used in this article, we refer to 
Fig. 1. The specimen transmission function is denoted by a 
matrix O ∈ CN×N where values at the row and column indices 
(i, j) define the object function at a position r ∈ [N2] in the spe
cimen plane. Similarly, values of the illuminating probe p(r) in 
the specimen plane at position r without shifting can be writ
ten in matrix form as P ∈ CN×N.

For all shifting coordinates in the set of flattened scan pos
ition coordinates, r̂s ∈ {r̂1, r̂2, . . . , r̂S}, we write the shifted 
matrix probe as Ps for s ∈ [S], where the S = Sy × Sx is the set 
of scanning points. Consequently, the matrix for a shifted ma
trix probe is given by

pij
( 􏼁

s = p(r − r̂s), where i, j ∈ [N], 

Here, we define the object, probe, diffraction patterns, and the 
scanning points on equi-spaced rectangular grids. Hence, the 
usual implementation of the discrete Fourier transform can 
be used. The intensity of the diffraction pattern at each scan
ning point can be written as

Is = F r Ps ◦O( )| |2 for s ∈ [S]. (1) 

Similar to the real space coordinate, each pattern Is for scan 
position s is indexed by flattened reciprocal space coordinates 
qs ∈ {q1, q2, . . . , qN2 }, where N2 denotes the pair index in the 
two-dimensional grid in reciprocal space. It should be noted 
that the complete set of diffraction patterns can be written 
as flattened scanning points index I ∈ RS × N × N or as a 4D ten
sor I ∈ RSy × Sx × N × N indexed by the two-dimensional scan pos
ition ̂r and the two-dimensional reciprocal space coordinate q, 
corresponding to the diffraction angle.

The two-dimensional Fourier transform with respect to the 
object and probe grid coordinates r is written as F r, with re
spect to the scan coordinate ̂r as F r̂, and the inverse transforms 
consequently as F−1

q and F−1
q̂ . The WDD algorithm estimates 

the object from the intensity of diffraction patterns and an es
timate of the probe. Picking up from Rodenburg & Bates 
(1992, equation (8)) where a relation between the object’s 
and probe’s Wigner distributions WO ∈ CSy × Sx × N × N resp. 
WP ∈ CSy × Sx × N × N is shown:

WO =
F−1

q F r̂ I( )( )WP

WP| |2+ϵ
(2) 

with Wv
P = F−1

q (F r(P)F r(P)|(q + q̂v)), where F r(P)|(q + q̂v) denotes 
a shift in reciprocal space of the Fourier-transformed probe for 
specific index v.

Fig. 1. Four-dimensional scanning transmission electron microscopy 
acquisition for a scanning point s ∈ [S] with definition of real space grid 
r = (ry , rx ) ∈ R2, reciprocal space grid q = (qy , qx ) ∈ R2, scanning grid 
r̂ = (r̂y , r̂x ) ∈ R2 and spatial frequency grid q̂ = (q̂y , q̂x ) ∈ R2.
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By inserting an estimate of the probe 􏽥P and calculating the 
probe’s Wigner distribution 􏽥WP, one can estimate the object’s 
Wigner distribution 􏽥WO. Following Rodenburg & Bates 
(1992), an estimate for the object 􏽥O can be obtained from 􏽥WO as

􏽥O =
F−1

q̂ F r 􏽥WO

􏼐 􏼑􏼌􏼌
􏼌
􏼌

q=0( )

􏼠 􏼡

���������������������

F r 􏽥WO

􏼐 􏼑􏼌􏼌
􏼌
􏼌

q̂=0,q=0( )

􏽳 ∈ CSy×Sx , (3) 

with q = 0 and (q̂ = 0, q = 0) denoting extraction of a subset at 
the specified coordinates. A visualization of the WDD algorithm 
is depicted in Fig. 2.

Calculating the deconvolution in (2) may consume large 
amounts of memory for typical 4D scanning transmission elec
tron microscopy (STEM) data if implemented naively follow
ing the equations above since a Fourier transform of the 
original data, as well as WP, which has the same size as the in
put data, might be instantiated at the same time. Furthermore, 
they are complex-valued and may require higher numerical 
precision than the input data. Additionally, this algorithm 
works on entire datasets, preventing a direct implementation 
of live processing.

To address the computational complexity and allow live 
processing, we introduce a dimensionality reduction to reduce 
the size of the input data and WP, and rearrange the WDD al
gorithm. The modification allows us to process the intensity 
data sequentially and update the reconstruction as the scan 
proceeds to acquire new intensity data.

Validation
Since ptychography is a quantitative reconstruction technique, 
any implementation should demonstrate that it is correct, i.e., 

that it reconstructs arbitrary object functions and/or illumi
nations quantitatively within its inherent limitations. 
Simulated datasets of a crystalline specimen resemble the 
real-world data that ptychography is used on in electron mi
croscopy, but they often have very high symmetry and have 
no natural orientation. That means errors such as a rolled, 
phase-reversed or inverted reconstruction, or multiplication 
with a factor may not be obvious. Such errors can, for ex
ample, be caused by mixing Fourier transform and inverse 
Fourier transform, by adding or omitting a complex conjuga
tion, or by incorrect use of FFT shift resp. inverse FFT shift. 
For this reason, the implementations used in this paper were 
validated with a simple procedurally generated asymmetric 
test image. It is clearly recognizable starting at 25 × 25 px 
and contains a wrapped phase ramp at an odd angle that cre
ates a characteristic single spot in the Fourier transform, al
lowing to visually confirm the correct relation between real 
and reciprocal space.

A test dataset was created from this test object using multi
plication with a synthetic illumination rolled to the scan pos
ition, inverse FFT shift, Fourier transform and FFT shift. The 
illumination was calculated from a synthetic circular aperture 
with value 17 to catch scaling issues that may not be apparent 
if the value 1 was used. The illumination function in amplitude 
and phase as well as the calculated amplitude, phase and inten
sity from the forward simulation were visually inspected to 
conform with the expected values. In particular, the simulated 
diffraction patterns contain a shifted replica of the illuminat
ing aperture at the expected position as a signature of the 
wrapped phase ramp. A virtual bright field image of the simu
lated dataset confirmed the correct spatial arrangement of the 
diffraction patterns. See Fig. 4 for a sample diffraction pattern 
and a virtual bright field image.

The WDD implementation was then confirmed to recon
struct the object quantitatively in amplitude and phase, taking 

(a)

(b)

(c)

Fig. 2. The schematic diagram for classical WDD. (a) The calculation of spatial frequencies q̂v of a four-dimensional scanning transmission electron 
microscopy diffraction pattern dataset is given by applying two-dimensional Fourier transform in the real space scan coordinate r̂s, (b) For each spatial 
frequency, the autocorrelation of the circular aperture is calculated, i.e., initial probe in reciprocal space, (c) Apply a two-dimensional inverse Fourier 
transform for each diffraction pattern dataset on each spatial frequency and the probe autocorrelation and use it for the deconvolution process by using a 
Wiener filter. Afterward, apply Fourier transform and extract for reciprocal space q = 0 to get an image on spatial frequency before estimating the object in 
real space scan coordinate with a two-dimensional inverse Fourier transform.
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the band pass filtering of WDD with twice the semiconvergence 
angle of the aperture into account (Fig. 3). The correct scale for 
the illumination of real-world microscopy data can be derived 
from a vacuum reference, i.e. a scan with the same parameters 
but without the specimen. This enables quantitative reconstruc
tion of both amplitude and phase of the object function.

Circular Harmonic Oscillator
In this section, we present details of the dimensionality reduc
tion method used.

The rate-limiting step in conventional WDD is the deconvo
lution of a massive dataset. Therefore, one can improve the 
performance by projecting the dataset onto a space with lower 
dimension while retaining the essential information, and per
forming the resource-intensive steps in this reduced represen
tation. Cropping and binning are simple examples of such 
projections from higher to lower dimension.

A basis of eigenfunctions of the HO has beneficial properties 
in this application that are detailed in the following sections. 
We start first by defining the HO. We provide a brief introduc
tion to this topic and refer the interested readers to the litera
ture (Sakurai, 1994).

One-Dimensional Harmonic Oscillator
The quantum-mechanical HO problem is described by the 
Hamiltonian operator

Ĥ[1D]
σ = −

∂2
x

2
+

x2

2σ4 . (4) 

Hartree atomic units are used in this section. Here, σ is a length 
scale parameter that also fixes the scale of the eigenvalues 
E[1D]

n (σ) of the operator Ĥ[1D]
σ , the so-called eigenenergies. 

The eigenvalue problem reads

Ĥ[1D]ψ[1D]
n (x) = E[1D]

n ψ[1D]
n (x), n ∈ N0. (5) 

Then, the energy eigenvalues are

E[1D]
n (σ) = σ−2 n +

1
2

􏼒 􏼓

(6) 

and the corresponding harmonic oscillator (HO) eigenfunc
tions are

ψ[1D]
n (x) = Hn

x
σ

􏼐 􏼑
exp −

x2

2σ2

􏼒 􏼓

(7) 

with the Hermite polynomials Hn. It can be seen that these 
eigenfunctions are Hermite polynomials weighted by a 

Fig. 4. Sample diffraction pattern and projection along the optical axis from the synthetic test dataset that is used for validation.

Fig. 3. Validation with a procedurally generated synthetic test dataset: comparing original object, reconstruction, approximate of the expected result 
calculated by bandpass-filtering the object with twice the aperture size, and difference between reconstruction and approximate expected value.
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Gaussian envelope function. For the usage as a basis, a proper 
L2-normalization is necessary. The normalized Hermite poly
nomials for several degrees are presented in Fig. 5.

Two-Dimensional Isotropic Harmonic Oscillator
The eigenfunctions of the quantum-mechanical two- 
dimensional isotropic HO, in the following, we will refer to 
it as circular harmonic oscillator (CHO), can be written as 
Cartesian product of two HO eigenfunctions. The 
Hamiltonian

Ĥ[2D]
σ = −

∇2

2
+

r2

2σ4 (8) 

has the eigenfunctions

ψ[2D]
nxny

(x, y) = ψ[1D]
nx

(x/σ)ψ[1D]
ny

(y/σ) (9) 

and the eigenenergies

E[2D]
nxny

(σ) = E[1D]
nx

(σ) + E[1D]
ny

(σ) = σ−2 nx + ny + 1
( 􏼁

. (10) 

Special Property of the Basis
The HO eigenfunctions with σ = 1 are also eigenfunctions of 
the Fourier transform (FT) operator, i.e., the Fourier trans
form of ψ[1D]

n (x) is again a Gauss–Hermite function:

F ψ[1D]
n (x)

( 􏼁
= ınψ[1D]

n (q), (11) 

for q being the reciprocal space coordinate adjoint to x. For a 
nonunity spread, i.e., any σ > 0, the FT produces a spread of 
1/σ in reciprocal space.

Furthermore, transforming a function by this eigenfunction 
changes a convolution into multiplication similar to a Fourier 
transform, which is discussed in Glaeske (1983, Theorem 4.1). 
That means transforming into this basis can replace Fourier 
transforms in the WDD algorithm.

Dimensionality Reduction for WDD
The Hermite–Gauss functions defined in (7) can be used as a 
basis for dimensionality reduction of STEM datasets. We first 
introduce the matrix notation from sampled Hermite–Gauss 
function before presenting the procedure to reduce the 

dimension of the data. Second, the transformation will be pre
sented as well as a numerical example for the transformation.

The sampling grid x and scaling factor σ in (7) should be 
adapted so that the basis is centered with respect to the diffrac
tion patterns and scaled to cover the area relevant for WDD, 
i.e., the area illuminated by the primary beam.

We can construct a matrix from sampled Hermite–Gauss 
functions as presented below

ψx =

ψ[1D]
n1

(x1) ψ[1D]
n2

(x1) · · · ψ[1D]
nL

(x1)

ψ[1D]
n1

(x2) ψ[1D]
n2

(x2) · · · ψ[1D]
nL

(x2)

..

.
· · · ..

.

ψ[1D]
n1

(xN) ψ[1D]
n2

(xN) · · · ψ[1D]
nL

(xN)

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

∈ RN×L, 

where we construct a sampling grid with respect to the COM 
in the x direction. After introducing the matrix representation 
of the Hermite–Gaussian function, we can define the dimen
sionality reduction by using this matrix. For a A ∈ RN×N, 
the projection to the lower dimension using Hermite–Gauss 
functions can be expressed as

H A( ) : = ψT
x ATψy ∈ RL×L. (12) 

This function H : CN×N → CL×L where L ≪ N maps from the 
data with dimension N × N to a lower dimension L × L. 
In this case, if we have dimension of diffraction patterns 
N × N, we can transform the diffraction pattern on the space 
of Hermite–Gauss functions with smaller dimension L × L.

In contrast to the original two-dimensional discrete 
Fourier transformation that preserves the dimension of the 
dataset, this transformation allows flexibility to reduce the 
dimension. Hence, we can apply this dimensional reduction 
technique in the deconvolution step in WDD as presented 
below

H Iv( ) =H Xv ⊛ Yv( ) for v ∈ [S]

=H Xv( )H Yv( ),
(13) 

where now the dimension is reduced from N × N to L × L 
with L ≪ N. The variable Iv is the intensity of diffraction pat
tern of specific spatial frequency coordinate v ∈ [S]. 
Variables Yv and Xv represent the autocorrelation of the illu
minating probe and the autocorrelation of the specimen 
transmission function, respectively. In parallel with classical 
WDD, the H(Yv) and H(Xv) represent functions at specific 
spatial frequency v that have similar properties to the 
Wigner distribution function of the probe and object in con
ventional WDD.

Transformation to lower dimension can be seen in Fig. 6, 
where we have reduced from dimension 256 × 256 to 
16 × 16. Since we apply dimensionality reduction to our 
4D STEM data, we also have to apply it to the autocorrelation 

Fig. 5. Normalized Hermite–Gauss functions up to nmax = 7. All functions 
are either even (ψ( − x) = ψ(x)) or odd (ψ( − x) = −ψ(x)), depending on the 
parity of n.

Fig. 6. Dimensionality reduction of PACBED data from Strontiumtitanat 
(SrTiO3) dataset (Strauch et al., 2021a). (a) PACBED data, (b) Lower 
Dimension (16 × 16), and (c) Reconstructed PACBED.
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of the illuminating probe to proceed with the deconvolution 
process, as shown in (13). The transformation from convolu
tion into multiplication by applying the operator H is derived 
from the properties of Hermite-Gaussian functions.

The choice of lower dimension L depends highly on the dif
fraction pattern from the datasets. In this section, we merely 
show that for the dataset given in Strauch et al. (2021a), di
mension 16 × 16 is enough to capture the essential Hermite– 
Gauss functions that represent the diffraction pattern for 
STEM with a focused probe at atomic resolution. In general, 
for different datasets, the choice of dimension L can be ad
justed as long as the upper left triangular structure is pre
served. Numerical evaluation for different dimensions L and 
the effect on the reconstruction is presented in the 
Numerical Results Section.

Live Processing WDD
A conventional WDD implementation following the proced
ure in the Wigner Distribution Deconvolution Section 
works on an entire dataset, which is not suitable for true 
live processing. A WDD implementation for live processing 
should update the estimate for the object transmission func
tion gradually by processing individual diffraction patterns 
as they arrive from the acquisition process. In WDD a 
Fourier transform is applied over the scan position coordi
nates, which is usually performed at once with an FFT in a 
conventional implementation, hence requiring the entire 
dataset.

Furthermore, live processing should be fast enough to keep 
up with typical detector speeds that are in the kHz range for 
4D STEM. The strategy to support live processing with 
WDD consists of three steps: 

1. Implementation of the Fourier transform over the scan 
position coordinates using multiplication with a partial 
DFT matrix instead of FFT.

2. Separation and precomputation of variables that can be 
computed independent of the diffraction patterns, in 
this case, the Wigner distribution function of the probe 
and Wiener filter in (2).

3. Dimensionality reduction to reduce number of individual 
computations.

Fourier Transform
We begin with a quick introduction of implementing a Fourier 
transform with a DFT matrix.

A one-dimensional Fourier transform can be implemented 
by constructing a Fourier matrix taken from sampled 
Fourier basis as follows (Jain, 1989, equation (5.44)),

F =
1
���
N
√

e−i2πf1x1/N e−i2πf1x2/N · · · e−i2πf1xN/N

e−i2πf2x1/N e−i2πf2x2/N · · · e−i2πf2xN/N

..

.
· · · ..

.

e−i2πfNx1/N e−i2πfNx2/N · · · e−i2πfNxN/N,

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

∈ CN×N, 

here the xj for j ∈ [N] represents the sample points on the even
ly spaced scan coordinates, and fj for j ∈ [N ] is the sample on 
the Fourier space. A discrete Fourier transform can be com
puted through matrix multiplication with F. A similar ap
proach can be done to implement a two-dimensional Fourier 

transform by applying the Kronecker product of two one- 
dimensional Fourier matrices (Jain,1989, equation (5.68)).

F2D = F ⊗ F ∈ CN2×N2
.

The Kronecker product constructs a block matrix with the total 
dimension of the product of the original dimension of two ma
trices. It should be noted that it is also possible to apply the 
Kronecker product even if both matrices are not square.

Suppose we have 4D STEM data Is ∈ RN×N for evenly 
spaced scanning points s ∈ [S]. Hence, we can vectorize our 
datasets into I ∈ RS×N2

, where the row and column space re
present all scanning points and the dimension of the micro
scope’s detector, respectively. The Fourier transform along 
the scan coordinates can be done by calculating the matrix 
product between the two-dimensional Fourier matrix and 
the datasets as expressed in the following:

Î = F2DI ∈ CS×N2
.

Let us write the matrix as a collection of all vectors on the col
umn space F2D = (f1, f2, . . . , fS) ∈ CS×S and the dataset as 
IT = (i1, i2, . . . , iS) ∈ RN2×S. Applying the property of matrix 
product, which can be expressed as the sum of outer product 
between column and row element of both matrices (Golub & 
Van Loan, 2013, Section 1.1.14, Algorithm 1.1.8), we can 
write the following:

F2DI =
􏽘S

s=1

fsi
T
s ∈ CS×N2

, (14) 

This sum is trivial to split into partial sums for parts of the in
put data I, allowing gradual processing with a live updating 
partial result. A reformulation of the WDD algorithm using 
this approach will be presented in the Modified WDD Section.

Precomputed Wiener Filter
In the conventional WDD as presented in the Wigner 
Distribution Deconvolution Section, we calculate the 
probe’s Wigner function as the initial parameter for decon
volution. The initial guess of the illuminating probe can be 
generated from the acquisition settings, such as the semicon
vergence angle, to compute the circular aperture in Fourier 
space. Therefore, the autocorrelation of the initial probe 
can be precomputed. The complete algorithm is presented 
in Algorithm 1.

The schematic diagram for the precomputed Wiener filter is 
presented in Fig. 7 where starting from the initial probe on the 
reciprocal space, i.e., circular aperture, we perform the correl
ation with respect to the shifted position on the spatial fre
quency. The results present the trotter shape yielding an 
intersection between both circular apertures. After calculating 
the correlation function, we continue with the dimensionality 
reduction to reduce the dimension before using the com
pressed correlation to calculate the Wiener filter with a small 
number to avoid zero division ϵ .

In typical cases for electron microscopy where the illumin
ation is a focused convergent beam with an angular range lim
ited by a circular aperture, we calculate the autocorrelation 
between shifted circular apertures. At some spatial frequencies 
q̂v, we may not have an intersection at all. These frequencies 
do not contribute to the reconstruction and can be omitted 
from the calculation. An illustration is given in Fig. 8.
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The shift depends on the microscope and acquisition param
eters, such as electron wavelength λ, semiconvergence angle θ, 
the radius of the circle in pixel R, and the scanning shift on the 
real space coordinates for both axes Δy, Δx. First of all, let us 
write the condition when the intersection occurs

s2
y + s2

x ≤ 4R2. (15) 

It should be noted that for spatial frequency indexes vy, vx 

∈[S], we can write the transformation to physical coordinate 
given by

sy = vy
λR

ΔyS sin θ
and sx = vx

λR
ΔxS sin θ 

If we have the same scanning shift Δy = Δx = Δ, we can have the 
condition

v2
y + v2

x

􏼐 􏼑 λ2

Δ2S2 sin2 θ
≤ 4 (16) 

For all combinations of vy, vx ∈ [S], we can find an upper 
bound v2

y + v2
x ≤ 2v2, where v = max(vy, vx) ∈ [S]. Hence, we 

have

v ≤􏽢S =
��
2
√

Δ sin θ
λ

S. (17) 

For specific setting in the acquisition process, we can have 
��
2
√

Δ sin θ/λ < 1, thereby, only required smaller intersection. 
To have a concrete number suppose we have a specific value 
of measurement settings, i.e., θ = 32 mrad, Δ = 0.026 nm, 

λ = 2.508 pm, we have scaling factor Ŝ = 0.47S, which is small
er than the total spatial frequency index S and can be used to 
improve the computation time of live processing WDD.

Modified WDD
Combining dimensionality reduction, gradual processing, as 
well as the precomputed Wiener filter, we present the modified 
WDD for live reconstruction in Algorithm 2. Since we 

Algorithm 1 Precomputed Wiener filter for Live WDD

1: Initialization: 

1. Initial probe on the Fourier space (pij) = p̂(q), for i, j ∈ [N ] i.e., 
circular apperture, generated from the radius of diffraction 
patterns.

2. Choose a small number to avoid zero division ϵ

2: for each predefined index on the spatial frequency coordinate in the 
set v ∈ {1, 2, …, S}
do

3: Apply transformation to get physical
coordinates of spatial frequency from acquisition
setting {q̂1, q̂2, . . . , q̂S}

4: Construct autocorrelation matrix Yv ∈ CN×N for
v ∈ [S]. The element of the matrix is
(yij)v = p̂(q) p̂(q + q̂v) for i, j ∈ [N].

5: Calculate dimensionality reduction to the initial
probe’s autocorrelation H(Yv) for v ∈ [S]. Calculate the Wiener filter

Kv = H(Yv)
H(Yv)| |

2+ϵ
∈ CL×L for v ∈ [S].

7: end For

Fig. 7. Schematic diagram for precomputed Wiener filter.

Algorithm 2 Modified WDD

1: Initialization: 

1. Precompute Wiener filter Kv for v ∈ [S] given in Algorithm 1 with 

the number of intersection index 􏽢S ≤ S with applied 
dimensionality reduction.

2. Initialize source for sequence of diffraction patterns Is ∈ RN×N for 
each scanning point s ∈ [S].

3. Precompute DFT matrices Fy ∈ CSy×Sy and Fx ∈ CSx×Sx for efficient 
on-the-fly computation of subsets of F2D.

4. Allocate and initialize buffer for object function O ∈ CSy×Sx with 
zero.

2: for each given real space scanning point index s in the set {1, 2, …, S} 
do

3: Apply dimensionality reduction H(Is) ∈ RL×L

and vectorization to have is = vec(H(Is)) ∈ RL2
.

4: Calculate subset of the Fourier matrix F2D

for s from the two precomputed DFT matrices.
5:Calculate outer product between all column

element in the subset of the Fourier matrix F2D

and vectorized intensity is as in (14), T = fsi
T
s ∈ CS×L2

, where we have 
tv ∈ CL2 

for v ∈ [S]
for each row of matrix T.

6: For each given spatial frequency index with nonzero intersection v in 
the set {1, 2, . . . ,􏽢S} do

7: Reshape the result for each row,
i.e., mat(tv) ∈ CL×L.

8: Deconvolution process on compressed space
Dv = mat(tv) ◦ Kv ∈ CL×L for v ∈ [􏽢S].

9: Calculate zero frequency by summing all
elements of matrix Dv = (dlk)v for l, k ∈ [L].
Here, we have scalar for each spatial frequency
ov =

􏽐L
l=1
􏽐L

k=1 (dlk)v
10: Replace the element of the nonzero index in

spatial frequency with ov

11: end for
12: We have an update vector

o = (o1, o2, . . . , oS) ∈ CS. This is added to the
buffer allocation matrix for each given scanning
point O : = O + mat(o) ∈ CSy×Sx

13: end for
14: Applying inverse Fourier transform and complex

conjugate on set of spatial frequencies to get real
space coordinate of the specimen transmission function F−1(O)
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compress and process the diffraction patterns per scanning 
point in Algorithm 2, the total reconstruction of the specimen 
transmission function is updated gradually, starting from a 
zero-initialized matrix. Furthermore, the updates from subsets 
of the input data can be computed independently, which al
lows trivial parallelization. This algorithm for Live WDD is 
implemented as a user defined function (UDF) for 
LiberTEM-live (Clausen et al., 2020). The complete schematic 

diagram for an implementation of WDD as a LiberTEM UDF 
is presented in Figure 9.

Time and Space Complexity
Here, we discuss the analysis of the Live WDD algorithm and 
compare it with conventional WDD. For both approaches, we 
derive the time and space complexity required to perform the 
steps specified by the algorithm. In this section, we denote the 
total scanning points as S for raster position on both x, y axis, 
i.e., S = Sx × Sy. In addition, the dimension of the detector is 
denoted as N × N. In Table 1, we provide a summary for the 
time and space complexity analysis for both algorithms.

For space complexity, it appears that the Live WDD scales 
better compared with conventional WDD since L ≪ N. 

Fig. 8. Geometry of the autocorrelation of the probe in reciprocal space.

(a) (c)

(b)

(d)

Fig. 9. The schematic diagram for running the Live WDD as a UDF in LiberTEM-live. The data stream from the detector is split into partitions, which are 
streamed to worker processes via queues. Each diffraction pattern is processed in the UDF as follows: (a) Applying dimensionality reduction and 
vectorization, (b) Processing the compressed frame with a subset of the Fourier matrix, (c) Accessing the precomputed Wiener filter to perform a single 
reconstruction as presented in (d). The merge function sums up the contributions from each partition, and the final reconstruction in real space is 
determined by the two-dimensional inverse Fourier transform.

Table 1. Computational Complexity of Conventional WDD and Live WDD.

Complexity Conventional WDD Live WDD

Time O(SN2 log SN2) max(O(SN2L), O(S2L2))
Space O(SN2) O(SL2)
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However, for time complexity, it highly depends on the total 
scanning points S and the logarithmic factor log (SN2) com
pared with the low dimension L, here we use L = 16. The der
ivation of complexity analysis is provided in the Conventional 
WDD and Live WDD Sections, respectively. It should be noted 
that complexity analysis does not predict the run time of the 
code that is implemented in the computer. It only describes 
the scaling behavior between the number of operations and 
the size of input data towards infinite size. However, we also 
provide the run-time evaluation of our implementation that 
utilizes LiberTEM Live in the Numerical Results Section.

Conventional WDD
First of all, conventional WDD performs a Fourier transform 
along the scanning position in real space to obtain the spatial 
frequencies. The computational complexity of a fast Fourier 
transform for all scanning points is O(SN2 log S). For each spa
tial frequency, we calculate the autocorrelation of the probe, 
which gives us computation time O(N2). Afterward, we cal
culate the Wigner distribution function by applying inverse 
Fourier transform on the autocorrelation as well as the intensity 
of diffraction patterns, for each taking O(N2 log N2). The process 
is followed by applying Wiener filtering or deconvolution that re
quires O(N2). Since we have to calculate all spatial frequencies, 
the computation is therefore S(O(N2) +O(N2 log N2)), which 
gives total for processing all spatial frequencies O(SN2 log N2). 
The next step is to calculate the Fourier transform of all deconvo
lution data before taking only zero reciprocal space, i.e., q = 0, 
hence we perform operation O(SN2 log N2). In the last step, we 
apply an inverse Fourier transform for estimated object which re
quires O(S log S). The total time computation for conventional 
WDD then O(SN2 log (S)) +O(SN2 log N2) +O(S log S). 
Simplification gives us time complexity of conventional WDD 
as O(SN2 log SN2).

For space complexity, we start with total memory allocation 
to store all 4D datasets to perform a Fourier transform on 
scanning points on the real space, i.e., to obtain the spatial fre
quencies, which requires O(SN2). For each spatial frequency, 
we have to process the data with dimension O(N2). In the 
last process to calculate the estimated object, we have space 
complexity O(S). Thereby, total space complexity of conven
tional WDD is O(SN2) +O(N2) +O(S), which then we have 
scaling for space complexity O(SN2).

Live WDD
The Live WDD presented here includes a compression step 
where the dimension of the compressed data is L × L, much 
smaller than detector size (L ≪ N). For the time complexity 
of Live WDD, we separate the processing into the computa
tion of the Wiener filter in Algorithm 1 and the actual data 
processing. The Wiener filter requires O(N2) for computing 
the autocorrelation function. Since we apply a dimensionality 
reduction, which is performed with three matrix multiplica
tions, we have O(LN2 + L2N). At the end of the process, we 
compute the element-wise division for the Wiener filter with 
complexity O(L2) and incorporate the process for all spatial 
frequencies S. Therefore, we have time complexity for the pre
computed Wiener filter as O(SN2L). For processing each scan
ning point, we calculate the dimensionality reduction for each 
diffraction pattern with complexity O(L2N + N2L). 
Afterward, the computation of the outer product between 
each column of Fourier matrix with a compressed 

diffraction pattern requires O(SL2). The next process is the 
deconvolution with the precomputed Wiener filter for all 
spatial frequencies which takes O(SL2). Getting zero 
frequencies and the update data have complexity O(SL2) 
and O(S), respectively. Thereby, processing with all 
real space scanning points is given by 
O(SL2N + SN2L) +O(S2L2) +O(S2). In the last step, to get 
the estimated object on the real space with dimension S, 
we apply an inverse Fourier transform that requires 
O(S log S).

In the end, for Live WDD we have total time 
complexity O(SL2N + SN2L) +O(S2L2) +O(S2) +O(S log S), 
which then gives us max(O(SN2L), O(S2L2)). The result 
highly depends on the dimension of N and S, where for a lar
ger detector dimension than total spatial frequency, we have 
time complexity O(SN2L). On the contrary, if we have a 
large field of view, there is a possibility then we have time 
complexity O(S2L2).

Regarding the space complexity, in Live WDD, we can pro
cess the data per frame, i.e., per diffraction pattern, the size of 
which corresponds to the detector’s dimension. In compari
son, conventional WDD stores the complete 4D dataset to 
compute the spatial frequencies. In addition, we apply a di
mensional reduction technique that only requires O(L2). For 
each scanning point on the real space as well as the nonzero 
intersection on the spatial frequency, the algorithm only re
quires O(L2) except for computing the estimated object that 
has dimension O(S). For the precomputed Wiener filter, we 
have to store 􏽢S ≤ S nonzero intersection spatial frequencies 
for the autocorrelation process with compressed dimension 
L × L. Hence we have O(SL2) space complexity of the precom
puted Wiener filter. In total, we have O(SL2) +O(S) +O(L2) 
and give us complexity O(SL2), which still better than conven
tional WDD.

In Numerical Results Section, we compare real-world time 
and space use of the proposed Live WDD and conventional 
WDD on various datasets.

Simulation and Experimental Datasets
The information of datasets and parameter settings to evaluate 
Live WDD are given in Pennycook (2021) for simulated gra
phene. The specimen has a hexagonal lattice structure, shown 
in Fig. 10. The 4D STEM data are generated by parameter set
tings presented in Table 2.

We can also add the effect of Poissonian noise to the simu
lated diffraction patterns data. Suppose we have dose level per 
pixel represented by variable ν that has a unit e−/Å2. The mod
el used to generate a noisy dataset for each intensity of 

Fig. 10. Structure of graphene. The structure is downloaded from 
materialsproject.org (Jain et al., 2013).
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diffraction patterns Is ∈ RN×N for s ∈ [S] is given as follows:

Poisson ν􏽥Is

􏼐 􏼑
∈ RN×N, 

where the 􏽥Is is normalization of the diffraction pattern for each 
scanning point and Poisson is a function to generate Poisson 
distribution applied to our dataset. It should be noted that this 
function preserves the dimension of the data.

Additionally, we also used an experimental datasets of 
SrTiO3 specimen acquired using Medipix Merlin EM detector 
(Strauch et al., 2021a), where the structure is presented in 
Fig. 11. The parameters setting of this dataset is presented in 
Table 3. Complete information about this dataset can be dir
ectly seen (Strauch et al., 2021a).

Numerical Results
We present numerical evaluations of the Live WDD in terms 
of reconstruction, computation time, and memory alloca
tion. For Live WDD, we also present how the live recon
struction evolves from partial results. As a comparison to 
the existing WDD implementation, we refer to the imple
mentation in Yang et al. (2016) as the reference to check 
the dynamic range of the phase, where the source code is 
available in https://gitlab.com/ptychoSTEM/ptychoSTEM
and https://gitlab.com/PyPtychoSTEM/PyPtychoSTEM. We 
use the same reconstruction parameters in WDD as given 
in the source code, for instance, the small constant ϵ for 
the Wiener filter.

The evaluation is performed individually on the same work
station with AMD EPYC 7543P with 32 CPU with 64 threads 
operating at a base frequency of 2.80 GHz, and 512 GB DDR4 
RAM with an operating frequency of 3.2 GHz. It should be 
noted that the simulation for each algorithm is performed 
without a noise background, i.e., no other processes or algo
rithms were running during the evaluation.

Effect of Dimensionality Reduction
In this section, we also evaluate the effect of dimensionality re
duction, represented by L ∈ {8, 16, 32, 64, 128}, to the 

diffraction pattern from the graphene dataset (Pennycook, 
2021) as well as the phase and error reconstructions. It should 
be noted that, since the ground truth is not available, we meas
ure the error with respect to the complex value and phase re
construction from PyPtychoSTEM.

First, we present the transformation of PACBED of gra
phene datasets to the space of Hermite–Gauss functions by ap
plying matrix product in (12). Figure 12 shows the structure of 
Hermite-Gauss coefficients for several dimensions, where the 
lower dimension L = 16 suffices to preserve the important in
formation of diffraction patterns. Hence, it can be used to jus
tify the choice of dimension for graphene datasets. However, 
for different datasets, the lower dimension L should be 
adapted. The errors of complex and phase reconstruction of 
specimen transmission function for different L are presented 
in Table 4, where we use relative mean square error to measure 
the difference, as follows:

􏽐Sy

i=1

􏽐Sx
j=1 oij − ôij
􏼌
􏼌

􏼌
􏼌2

􏽐Sy

i=1

􏽐Sx
j=1 oij
􏼌
􏼌
􏼌
􏼌2

, 

where oij and ôij are element of matrices from complex or 
phase reconstruction for both PyPtychoSTEM and Live 
WDD, respectively. It can be seen that the error reconstruction 
improves starting from L = 16. The rest of numerical section 
are proceeded with dimension L = 16.

Reconstruction
We performed numerical comparisons of the Live WDD and 
the conventional WDD given in the PyPtychoSTEM, with a 
similar setting for both algorithms, e.g., ϵ = 0.01. In the first 
part, we focus on the evaluation of noise-free conditions for 
graphene datasets. The second part covers the performance 
of algorithms when applied to data that is degraded by 
Poissonian noise corresponding to different dose levels. Since 
the goal is to show the specimen transmission function, we 
present the final phase reconstruction from the Live WDD.

Figure 13 shows the reconstruction of the graphene dataset 
for both the PyPtychoSTEM implementation of WDD and the 
Live WDD for noise-free conditions. It can be seen that the 
Live WDD can reconstruct the specimen transmission func
tion with the correct orientation of the atom represented by 
the phase and similar dynamic range. In the next evaluation, 
we conduct numerical evaluation for different dose levels, 
namely for ν ∈ {102, 103, 104, 105} e−/Å2. The reconstruction 
for noisy setting is depicted in Fig. 14.

Compared with the conventional WDD, which performs 
faithful reconstruction starting from dose ν = 105 e−/Å2, 
Live WDD yields a recognizable reconstruction starting 
from ν = 104 e−/Å2. Hence, it can be seen that the Live 
WDD is more robust against Poissonian noise. Besides the 

Table 2. Parameters for Simulated Graphene (Pennycook, 2021).

Parameters Graphene

Rotation (deg) 0.0
Semiconv. angle (mrad) 30
Accel. voltage (keV) 60
Scanning step size (nm) 0.02
Scanning points (Sy, Sx) (64, 65)
Detector size (pixel) (256, 256)

Fig. 11. Structure of material SrTiO3. The structure is downloaded from 
materialsproject.org (Jain et al., 2013).

Table 3. Parameters for Experimental Dataset SrTiO3 (Strauch et al., 
2021a).

Parameters SrTiO3

Rotation (deg) 88
Semiconv. angle (mrad) 22.13
Accel. voltage (keV) 300
Scanning step size (nm) 0.0127
Scanning points (Sy, Sx) (128, 128)
Detector size (pixel) (256, 256)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

am
/article/29/3/994/7072677 by Forschungszentrum

 Julich , Zentralbibliothek user on 19 June 2023

https://gitlab.com/ptychoSTEM/ptychoSTEM
https://gitlab.com/PyPtychoSTEM/PyPtychoSTEM


1004                                                                                                                                    Microscopy and Microanalysis, 2023, Vol. 29, No. 3

property of flexible dimensional reduction, the arbitrary or
der of the Hermite–Gauss functions can be seen as a low-pass 
filter, where the width σ is optimized so that the any pixel 
noise is strongly suppressed by the dimensionality reduction, 
as in Fig. 5.

A line scan through the reconstruction at dose level 104 

e−/Å2 is presented in Fig. 15, which shows that the noise affects 
the phase reconstruction of both algorithms. It can be seen that 
the Live WDD has better noise suppression than 
PyPtychoSTEM, where the latter requires more dose to reliably 
find atom positions in the phase reconstruction. For infinite 
dose, both algorithms present the same atom positions with a 
different value range for Live WDD compared with 
PyPtychoSTEM. A difference is to be expected because Live 
WDD reduces the dimensionality using Hermite–Gauss func
tions, while PyPtychoSTEM uses Fourier space without dimen
sionality reduction. That means the two methods are not 
numerically equivalent.

Computation Time
The numerical computation time for Live WDD compared 
with the conventional WDD given in Yang et al. (2016) is dis
cussed. The evaluation is presented in Tables 5 and 6, where 
we measure the median, as well as the standard deviation of 
computation time for live and conventional WDD for different 
dimension of datasets generated from Graphene in Pennycook 
(2021). To investigate the effect of both increasing scanning 
points and detector dimensions on the computation time, we 
also observe both parameter settings, where we use the con
vention Sy, Sx as the number of scanning points for both 
axes in the raster scan. Dimension of detector is given by Ny, 
Nx. Here, we evaluate by increasing the dimension of gra
phene datasets, where the larger dimension of scanning points 
is generated by replicating the datasets. In addition, for the de
tector dimension, we use zero padding techniques. The focus is 
merely to provide the conceptual study on the effect of larger 
datasets on the memory allocation and run time of the pro
posed algorithm in the code implementation.

We perform 10 trials to measure the numerical computation 
time for both algorithms. From these measurements, we show 

the median computation time. It can be seen that 
PyPtychoSTEM requires more memory than available to ac
complish the reconstruction. As discussed in the Time and 
Space Complexity Section, accommodating an entire dataset 
requires a large memory allocation for PyPtychoSTEM and 
impinges on the computation performance in general. In all 
cases, Live WDD performs faster numerical computation 
than conventional WDD implemented in PyPtychoSTEM. 
However, when the same dimension for both scanning points 
and detector size is evaluated, i.e., (1,024, 1,024), we observe 
the computation time increases approximately a 100-fold due 
to the quadratic scaling in the time complexity, as discussed in 
the Time and Space Complexity Section.

Memory Allocation
Apart from the numerical computation time, we are also in
terested in independently observing the memory allocation 
for both algorithms during the reconstruction process. For 
this reason, we record the memory usage every 0.2 s. The 
evaluation for memory allocation is also performed inde
pendently of the investigation of numerical computation 
time in the previous section and separately for each algo
rithm. Similar to the numerical computation time, we present 
the evaluation for both increasing dimensions of scanning 
points and detector.

Figure 16 shows that for detector dimension (1, 024, 1, 024) 
PyPtychoSTEM requires more memory than available to com
plete the reconstruction. Live WDD only requires a constant 
amount of memory around 104 MB independent of detector 
size. The maximum memory allocation to complete each algo
rithm for increasing detector dimension is presented in 
Table 7. In addition, we also investigate the effect of increasing 
scanning points dimension or the dimension of the field of 
view, as presented in Fig. 17. PyPtychoSTEM requires more 

(a) (b) (c) (d) (e)

Fig. 12. The lower dimension after dimensionality reduction of PACBED from a graphene dataset (Pennycook, 2021) with dimension: (a) L = 8, (b) L = 16, 
(c) L = 32, (d) L = 64, and (e) L = 128.

Table 4. Error Reconstruction in Terms of Dimensionality Reduction.

L 8 16 32 64 128

Complex 1.1e − 4 2.3e − 5 2.1e − 5 2.1e − 5 2.2e − 5
Phase 0.12 0.025 0.022 0.022 0.023

(a) (b)

Fig. 13. Phase reconstruction of simulated graphene with (a) 
PyPtychoSTEM and (b) Live Processing WDD.
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memory than available to complete the reconstruction for 
scanning points (1, 024, 1, 024). Also, in this scenario, Live 
WDD uses memory more efficiently than PyPtychoSTEM. 
The maximum memory allocation for increasing scanning 
points is given in Table 8.

Live Processing Evaluation
In this section, we demonstrate that the performance of Live 
WDD is sufficient for live acquisition and reconstruction 
with real-world 4D STEM detectors. In 4D STEM, illustrated 

in Fig. 1, the acquisition time per scanning point is usually 
limited by the detector frame rate. The specification for dif
ferent detectors, namely Merlin MedipixEM,1 Dectris 
Quadro,2 and Dectris Arina,3 are given in Table 9. The max
imum frame rate may depend on the chosen bit depth and 

(a) (b) (c) (d)

Fig. 14. Phase reconstruction of simulated graphene with different dose levels (a) 102 e−/Å2, (b) 103 e−/Å2, (c) 104 e−/Å2, and (d) 105 e−/Å2.

(a) (b)

Fig. 15. Phase reconstruction of simulated graphene with dose level 104 e−/Å2 and infinite dose for both algorithms (a) PyPtychoSTEM and (b) Live WDD. 
The line scan reconstruction is also presented where the scan location on Y-direction: 32.

Table 5. Numerical Median Computation Time in Seconds for 
PyPtychoSTEM and Live WDD for Fixed Dimension Scanning Points 
Sy = Sx = 128 and Increasing Detector Ny = Nx. Here, we use L = 16.

Dimension PyPtychoSTEM Live WDD

128 48.76 ± 0.14 1.28 ± 0.07
256 145.51 ± 2.16 2.21 ± 0.069
512 631.71 ± 9.05 12.60 ± 0.65
1,024 – 37.42 ± 0.85

Table 6. Numerical Median Computation Time in Seconds for 
PyPtychoSTEM and Live WDD for Fixed Dimension Detector Ny = Nx =  
128 and Increasing Scanning Points Sy = Sx. Here, we use L = 16.

Dimension PyPtychoSTEM Live WDD

128 48.76 ± 0.14 1.28 ± 0.07
256 199.12 ± 0.60 14.82 ± 0.05
512 824.04 ± 7.45 228.59 ± 0.18
1,024 – 3048.48 ± 5.94

1 https://quantumdetectors.com/wp-content/uploads/2022/01/ 
MerlinEM-app-notes.pdf

2 https://www.dectris.com/detectors/electron-detectors/for-materials- 
science/quadro/

3 https://www.dectris.com/detectors/electron-detectors/for-materials- 
science/arina/
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readout area for a given detector. To accomplish a continu
ous reconstruction, data processing time per detector frame 
needs to be faster than the STEM dwell time. Following the 
considerations on computational complexity, this highly de
pends on the number of scanning points, the detector size, 
and the number of nonzero entries in the Wiener filter. 
Since the processing is parallelized using a UDF and 
LiberTEM-live, the number and speed of CPU cores is a ma
jor factor as well.

To illustrate the scalability of Live WDD, we show the scal
ing behavior of the computation time as a function of number 
of CPU cores for dimension (128, 128, 128, 128), as presented 
in Fig. 18. The scaling is nearly linear for up to eight cores and 
tapers off after that.

Based on the performance data from our 32 core CPU in 
Tables 5 and 6, we can therefore support live reconstruction 
up to the frames per second (fps) as presented in Table 10. 
Therefore, a reconstruction using Live WDD can keep up 
with Merlin Medipix and Dectris Quadro without ROI up 
to a dimension of (256, 256, 128, 128) when used with the giv
en setup and settings.

Figure 19 shows simulated live reconstruction for different 
stages of scanning progress for Live WDD and Live SSB 
from (Strauch et al., 2021b), where the update is added grad
ually until completing all scanning points. Here, the dimension 
of the 4D STEM data is (128, 128, 256, 256), as described in 
Table 3.

Discussion
Since we only perform the object reconstruction using a syn
thetic probe initialization, a potential next step for Live 
WDD could be to factor in the microscope alignment and up
date the probe. After estimating the object, we can swap the 
deconvolution process to reconstruct the probe. This process 
is straightforward, but the additional computation and update 
for the Wiener filter would affect the performance. Therefore, 
an efficient and on-fly computation should be implemented to 
overcome this issue.

The time complexity of Live WDD for a large field of view is 
scaled quadratically with total scanning points and reduced di
mension, respectively. Although the Live WDD implementa
tion can complete the reconstruction, our numerical 
observation shows that it takes approximately one hour 
with dimension (1, 024, 1, 024, 128, 128), which is inefficient. 
This could be overcome by subdividing the field of view into 
smaller patches that are reconstructed independently and sub
sequently merged. In this case, the time complexity can be re
duced to a linear scale of the number of subsets.

Another strategy to optimize the performance of Live WDD 
could be to choose an optimal scan step based on the intersec
tion of the probe’s auto correlation in reciprocal space, as pre
sented in (17). Making sure that the scan grid is not 
unnecessarily fine can reducing the number of scanning points 
to process. It is also thinkable to adapt WDD and Live WDD 
for scan patterns that are not on an equispaced grid. In that 
case, a matrix for a nonuniform discrete Fourier transform 
should be used to match the scanning points.

In this article, we focus on the application of live WDD on 
STEM with a focused probe at atomic resolution using data
sets from the literature, i.e., graphene and SrTiO3. It will be in
teresting to observe more complicated specimen structures, 
simulations with different parameters, and the effects of a 
probe with defocus or aberrations.

We will defer such possible improvements to future works.

Summary
As an evolution of the classical WDD algorithm, we demon
strated Live WDD that can reconstruct in a streaming fashion 
while acquiring diffraction patterns to support real-time re
construction. Our investigation shows that Live WDD produ
ces object reconstructions that approximate the conventional 
result. The algorithm uses less memory and runs faster than 
the classical WDD for typical parameters. As a side effect of 
dimensionality reduction, we also observe that it acts as a 
filter for Poissonian noise to attain a more robust reconstruc
tion from low-dose diffraction patterns. We compare the nu
merical computation time of the proposed algorithm with 
the dwell time of Merlin Medipix and Dectris Quadro detec
tors, where we can perform live continuous reconstruction 
with a field of view up to (256, 256) on a system with 32 
CPU cores.
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(a) (b) (c) (d)

Fig. 16. Memory allocation for conventional WDD and Live WDD (L = 16) for different detector sizes: (a) (128,128,128,128), (b) (128,128,256,256), (c) 
(128,128,512,512), and (d) (128,128,1,024,1,024).

Table 7. Maximum Memory Allocation in MB for PyPtychoSTEM and Live 
WDD for Fixed Scanning Points Dimension Sy = Sx = 128 and Increasing 
Detector Size Ny = Nx. Here, we use L = 16.

Dimension PyPtychoSTEM Live WDD

128 14,725 15,343
256 60,505 16,136
512 244,557 17,889
1,024 – 24,887
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(a) (b) (c) (d)

Fig. 17. Memory allocation for conventional WDD and Live WDD (L = 16) for different scanning point dimensions: (a) (128,128,128,128), (b) 
(256,256,128,128), (c) (512,512,128,128), and (d) (1,024,1,024,128,128).

Table 8. Maximum Memory Allocation in MB for PyPtychoSTEM and Live 
WDD for Fixed Dimension Detector Ny = Nx = 128 and Increasing Scanning 
Points Sy = Sx. Here, we use L = 16.

Dimension PyPtychoSTEM Live WDD

128 14,725 15,343
256 61,521 19,952
512 244,121 39,577
1,024 – 106,585

Table 9. Specification of Different Detectors That Support Experimental 
Acquisition.

Detectors Frame Rate (kHz)

MedipixEM 18.8 (1-bit), 3.2 (6-bit), or 1.6 (12-bit)
Dectris Quadro 2.25 (16-bit), 4.5 (8-bit), ROI 9 (16-bit),

ROI 18 (8-bit)
Dectris Arina 120 (12-bit)

Fig. 18. Computation time depending on the number of cores for a 
dataset dimension (128, 128, 128, 128). Despite using the CPU 
bandwidth as a shared resource the algorithm exhibits a 15 × speedup on 
32 cores.

Table 10. Processing Speed in Frames per Second for Live WDD for Fixed 
Dimension Detector Ny = Nx = 128 and Increasing Scanning Points Sy = Sx. 
Here, we use L = 16.

Dimension Average (s) Frame/s

128 1.32 12,412
256 14.82 4,422
512 228.65 1,146
1,024 3048.66 343

(a) (b) (c) (d) (e)

Fig. 19. Snapshots of simulated live ptychography (phase) using Live WDD (top) and Live SSB (bottom) method at different stages of the scan for SrTiO3 

datasets for different buffer processes: (a) 10, (b) 26, (c) 41, (d) 57, and (e) 72. Note how the results don’t have to be merged in any particular order.
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