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Abstract
Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental
disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently
effective, with only 30% of patients showing a favorable response to treatment. To provide personalized
treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic
scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients
with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a
genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian
regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of
Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and
BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response — defined in a
continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using
regression models, each adjusted for the covariates: age, sex, and the first four genetic principal
components. Statistical significance was determined at P< 0.05. Li+PGS was positively associated with
lithium treatment response in the ConLi+Gen cohort, in both the categorical (P=9.8x10-12, R2=1.9%) and
continuous (P=6.4x10-9, R2=2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk
distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding
favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment
outcome (P=3.9x10-4, R2=0.9%), but not for the continuous outcome (P=0.13). Gene-based analyses
revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and
acetylcholine.
Li+PGS may be useful in the development of pharmacogenomic testing strategies by
enabling a classification of bipolar patients according to their response to treatment. Keywords:
Polygenic score, pharmacogenomics, lithium, bipolar disorder, psychiatry

Introduction
Bipolar disorder (BD) is a severe and often disabling mental health disorder that affects more than 1% of
the population worldwide and is characterized by recurrent episodes of depression and mania 1. BD
accounted for 9.3 million disability-adjusted life years (DALYs) in 2017, and imposes a significant social
and economic burden on society and healthcare systems 2, 3. BD is associated with a significant somatic
and psychiatric comorbidity 1 and an increased risk of suicide 4.

Since the discovery of lithium’s mood-stabilizing property in 1949 5, it has been widely used as a first-line
therapy for patients with BD 6, 7. Lithium is effective in treating acute episodes of illness and reduces the
risk of future recurrences of mania and depression 8. It has also been shown to reduce the risk of suicide
9. Despite these merits, the efficacy of lithium is highly variable, with about 30% of treated patients
showing a favorable response while more than 30% of them have no clinical response at all 8, 10. Thus
far, the causes and predictors of such heterogeneity in treatment response are insufficiently understood.
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Genetic factors are thought to contribute, at least in part, to the large interindividual differences in
response to lithium 10–15. So far, only a few genetic studies have identified specific single nucleotide
polymorphisms (SNPs) and candidate genes associated with patients’ response to lithium or treatment-
related side effects 10, 11, 13–16. Each employing a genome-wide association study (GWAS) approach, the
Taiwan Bipolar Consortium found SNPs in the introns of GADL1 associated with lithium treatment
response 17, whereas the International Consortium on Lithium Genetics (ConLi+Gen) identified a locus on
chromosome 21 10, and a follow-up analysis uncovered additional variants within the human leukocyte
antigen (HLA) region 14, 16. Gene expression analysis of ConLi+Gen data also showed overexpression of
genes involved in mitochondrial functioning in lithium responder patients, highlighting the electron
transport chain as a potential target of lithium 18.

In our recent work, we applied a polygenic score (PGS) modeling approach and demonstrated
associations between a poor response to lithium and a high genetic loading for schizophrenia (SCZ) 14,
major depression (MD) 13, and a meta-PGS combining both SCZ and MD 15. Machine-learning models
that combined clinical variables with the PGS of SCZ and MD has further improved the prediction of
lithium treatment response, explaining 13.7% of the variance 19.

Based on these previous results, translation of PGS testing into clinical practice requires the
consideration of three important learnings. First, the PGS of a single phenotype (e.g., SCZ or MD) explains
only a small proportion (< 2%) of the variability to treatment response in patients with BD 13, 14, providing
insufficient power for clinical use. Second, a meta-PGS from multiple related phenotypes has better
predictive power than a PGS from a single phenotype 15, suggesting the need to explore additional
biological markers, including additional PGSs, that can either independently or together with existing
PGSs better predict lithium treatment response. Third, developing polygenic markers with direct
pharmacogenomic implications is essential, for example, a PGS for lithium treatment response (Li+ PGS),
which is perhaps biologically more related to lithium’s pharmacological actions than PGSs built for other
clinical phenotypes (i.e. SCZ or MD; that may indirectly influence treatment response or symptom severity,
but do not index pharmacogenetic signatures per se).

Here, we developed a novel Li+ PGS for lithium treatment response and applied gene-based pathway
analyses to identify molecular mechanisms impacted by genetic variation in response phenotypes.
Findings may assist in optimizing and personalizing the selection of mood stabilizers in patients with BD,
and may point to novel molecular targets for future drug development.

Methods And Materials
Study Samples: For this study, we obtained genetic and clinical data from the International Consortium
on Lithium Genetics (ConLi+Gen: N = 2,367), Pathomechanisms and Signature in the Longitudinal Course
of Psychosis study (PsyCourse: N = 89), and BipoLife cohort (N = 102). Figure 1 shows the detailed steps
of data analysis.
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Insert Fig. 1

Discovery cohort

ConLi+Gen is a global collaboration of scientists established to study the pharmacogenomics of lithium
treatment in patients with BD 10. In the current study, we analyzed the genome-wide genotype and clinical
data of 2,367 lithium-treated bipolar patients of European ancestry collected by 22 participating sites in
13 countries, including Australia (n = 122), Austria (n = 43), Czech Republic (n = 45), France (n = 210),
Germany (n = 218), Italy (n = 255), Poland (n = 97), Romania (n = 152), Spain (n = 74), Sweden (n = 304),
Switzerland (n = 57), Canada (n = 353) and the USA (n = 437) 10, 20.

Replication cohort

To replicate Li+ PGS associations found in the discovery ConLi+Gen sample, we utilized datasets from
PsyCourse and BipoLife where the study participants were of European ancestry. PsyCourse is a
longitudinal multicenter study conducted from 2012 to 2019 in Germany and Austria, with up to four
assessments at 6 monthly intervals. The study comprises 1,320 patients from psychotic-to-affective
spectrum, of which, datasets from 89 patients with BD who received lithium treatment were obtained for
this study21. BipoLife is a multicenter cohort study, established to investigate the biological basis of BD
and patients’ response to treatment and being conducted across ten university hospitals in Germany
(Berlin, Bochum, Dresden, Frankfurt, Göttingen, Hamburg, Heidelberg, Marburg, Munich and Tübingen)
and the medical informatics section of the University of Göttingen 22.

Target outcome

In both discovery and replication cohorts, patient’s treatment response was assessed using the
“Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder”
scale, also called the ALDA scale 10. The target outcome “lithium treatment response” was defined in
categorical and continuous scales among patients who had received lithium for a minimum of 6 months
10. The detailed procedures of ALDA scale measurement and its validity are described elsewhere 13, 14, 20.
Briefly, the ALDA scale measures symptom improvement over the course of treatment (A-score, range 0 − 
10), which is then weighted against five criteria (B-score that assesses confounding factors, each scored
0, 1, or 2). Once we calculated the total score as ‘A-score minus B-score and setting negative scores to
zero’, the categorical (good versus poor) lithium treatment response was defined at a cut-off score of 7,
where patients with a total score of 7 or higher were considered as “responders” 10. The continuous
outcome for lithium treatment response was defined on subscale-A, but patients with a total B score
greater than 4 or who had missing data on the totals of ALDA subscale-A or B were excluded 10.

Genotyping, Quality Control And Imputation
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We obtained the genotype data assayed with different types of commercial SNP arrays across multiple
cohorts 10, 21, 22 and applied a series of quality control (QC) procedures before and after imputation using
PLINK 23. First, SNPs that had a poor genotyping rate (< 95%), strand ambiguity (A/T and C/G SNPs), a
minor allele frequency (MAF) less than 1% or showed deviation from Hardy-Weinberg Equilibrium (P < 10− 

6) were removed. Then, individuals with low genotype rates (< 95%), who had sex inconsistencies
(between the documented and genotype-derived sex), and who were genetically related were excluded.

Imputation: The genotype data passing QC were imputed on the Michigan server 2424

(https://imputationserver.sph.umich.edu) separately for each genotyping platform, using the Haplotype
Reference Consortium (HRC) reference panel that consists of the largest available set (64,976 human
haplotypes) of broadly European haplotypes at 39,235,157 SNPs 25. For each cohort, imputation quality
procedures were implemented to exclude SNPs of low-frequency (MAF < 10%) and low-quality (imputation
quality score R-square < 0.6). From the imputed dosage score, genotype calls for the filtered SNPs were
derived and common sets of 4,652,947 SNPs across the cohorts were merged using PLINK 23.

STATISTICAL ANALYSIS
We implemented polygenic score modeling, genome-wide SNP association, gene-based and functional
analysis as described below.

Genome-wide SNP association analysis: Genome-wide SNP association analyses were performed on the
binary lithium treatment response and continuous ALDA total score using logistic and linear regression
models as implemented in PLINK software 23, respectively. Each analysis was adjusted for the covariates:
age, sex, chip type and the first four genetic principal components (PCs).

Polygenic score development

Using a polygenic score model constructed via Bayesian regression framework and continuous shrinkage
(CS) prior on SNP effect sizes implemented in the PRS-CS software 26, we built Li+ PGS for individuals of

European descent who participated in the ConLi+Gen study and replicated the findings in the combined
PsyCourse and BipoLife datasets. Polygenic scores were computed using PRS-CS to infer posterior SNP
effect sizes under continuous shrinkage (CS) using GWAS summary statistics and an external linkage
disequilibrium (LD) reference panel. For the current analysis, the precomputed LD pattern of the 1000
Genomes European reference panel 27 and the discovery GWAS summary statistics were used to
calculate PGS scores.

For the ConLi+Gen study, Li+ PGS was derived only for the European ancestry individuals (n = 2,367) using

a five-fold leave-one-group out (LOG) procedure 28 to remove discovery-target circularity. In each fold, 80%
of the sample (n = 1,893) was used to generate GWAS summary statistics that were used as discovery for
PGS calculation in the 20% left-out target sample (n = 474). The procedure was repeated five times by
selecting a non-overlapping set of 20% left-out samples to calculate PGS for the entire cohort. Finally, Li+ 
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PGS was computed for the PsyCourse and BipoLife participants using ConLi+Gen’s GWAS summary
statistics (discovery sample) generated from the full European cohort (n = 2,367).

Polygenic score association analysis: To assess the association of Li+ PGS with lithium treatment
response, a binary logistic regression model was applied for the binary outcome (good versus poor
response to lithium treatment), and a Tobit analysis model (censored regression) was used for the
continuous outcome (ALDA total) 29. In addition, we divided the ConLiGen sample into deciles, ranging
from the lowest polygenic load (1st decile, reference group) to the highest polygenic load (10th decile).
Then, we compared BD patients in the higher polygenic load deciles (2nd − 10th deciles) with patients in
the lowest polygenic load decile (1st decile). In both the binary and continuous outcomes, the proportion
of phenotypic variance explained by Li+ PGS was computed as the difference in R2 of the model fit with

Li+ PGS plus covariates, compared to the model fit with only covariates. Each modeling analysis was
adjusted for the covariates: age, sex, and the first four genetic PCs, and statistical significance was set at
p < 0.05.

Gene-based and functional analysis

The gene-based analysis was based on summary statistics generated from the full European ancestry (n 
= 2,367) ConLi+Gen genome-wide SNP association analysis (see Fig. 3) and employed MAGMA (Multi-
marker Analysis of GenoMic Annotation) 30, a tool that uses a multiple regression approach to
incorporate LD between markers and to detect multi-marker effects.

To explore the biological context of the genes discovered from the gene-based analysis, a pathway
analysis was implemented using PANTHER (Protein ANalysis THrough Evolutionary Relationships;
http://pantherdb.org/) classification system. PANTHER is designed to classify proteins (and their genes)
into biological pathways 31. To prepare the input genes for PANTHER, we selected genes that showed
gene-level association with lithium treatment response (either with the categorical or continuous
outcome) at MAGMA adjusted p-value < 0.001. This list of genes was entered into PANTHER version-17
which compares the proportion of input genes mapping to a biological pathway to the reference gene list
from its databases. Molecular relationships previously experimentally observed in Homo sapiens
(human) were included. The significance of the overrepresented PANTHER pathways was determined
using Fisher’s exact test and later adjusted for multiple testing using the Bonferroni correction method.
Significant associations were defined at p-value < 0.05.

Results

Sample Characteristics

The discovery analysis consisted of ConLi+Gen data obtained from 2,367 bipolar patients of European
ancestry who had undergone lithium treatment for at least six months. The mean (sd) age of the patients
was 47.5(13.9) years and 1,369 (57.8%) were female. In all, 660 (27.9%) of patients had a good response
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to lithium treatment (ALDA score ≥ 7). The mean (sd) ALDA score for ConLi+Gen participants was 4.1
(3.1). The replication analysis was based on a combination of the PsyCourse and BipoLife datasets (N = 
191), whose mean (sd) age was 49.1(13.0) years. Of the 191 patients with BD, 48(25.1%) had a good
response to lithium (Table 1).

Table 1
The characteristics of patients with BD and lithium treatment outcomes.

Characteristics BD patients ConLi+Gen PsyCourse and
BipoLife combined

N = 2,558 N = 2,367 N = 191

Good responders to lithium defined as ALDA total score 
≥ 7, N (%)

660
(27.9%)

48 (25.1%)

Mean (se) total ALDA score 4.12
(3.15)

4.3 (2.9)

Country of origin N (%)  

Australia 122 (5.2)  

Austria 43 (1.8)  

Canada 353 (14.9)  

Czech Republic 45 (1.9)  

France 210 (8.9)  

German 218 (9.2) 191 (100%)

Italy 255 (10.8)  

Poland 97 (4.1)  

Romania 152 (6.4)  

Spain 74 (3.1)  

Sweden 304 (12.8)  

Switzerland 57 (2.4)  

USA 437 (18.5)  

Age at interview, mean (sd) 47.5
(13.9)

49.1 (13.0)

Sex, Women, N (%) 1369
(57.8)

84 (44.0%)

BD: Bipolar disorder; N: number, sd: standard deviation; se: standard error.
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Insert Table 1 here

Associations Of Li  With Lithium Treatment Response In Bipolar
Patients

Using ConLi+Gen data, we found statistically significant associations between Li+ PGS and lithium

treatment response — both in the categorical (P = 9.8x10− 12, R2 = 1.9%) and continuous (P = 6.4x10− 9, R2 
= 2.6%) outcomes. Li+ PGS was positively associated with response to lithium treatment, with an adjusted
odds ratio (OR) [95%CI]) of 1.39 [1.26, 1.54]. In other words, BD patients who carry a higher genetic
loading for lithium responsive genetic variants, measured using the Li+ PGS, have higher odds of favorable

lithium treatment response, compared to patients carrying a low Li+ PGS load. Table 2 shows the

association results of Li+ PGS and lithium treatment response in categorical and continuous outcomes.

The odds of a favorable treatment response increased as the Li+ PGS increased, ranging from 1.59 fold
[95%CI: 1.02–2.49] at the 2nd decile to 3.47 fold [95%CI: 2.22–5.47] at 10th decile, compared to the
reference Li+ PGS at the 1st decile (Table 2). While there was an increasing trend in the odds of lithium
treatment response across the deciles, the most significant prediction contrast was found at the
‘extremes’ (1st and 10th decile) which comprised of ~ 20% of the total cohort (Fig. 2). A replication PGS
analysis in the combined PsyCourse and BipoLife samples found a statistically significant association of
Li+ PGS with the categorical lithium treatment response (P = 3.9x10− 4, R2 = 0.9%), but not with the
continuous outcome (P = 0.13).
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Table 2
The association of PGS for lithium variants and treatment response to lithium in patients with BD at

different sample splits.
Sample split N Categorical outcome

OR (95%CI)

Continuous outcome: ALDA total
score, OR (95%CI)

ConLi+Gen 2367 unadjusted adjusted unadjusted adjusted¥

80%/20% 2083/284 1.31(1.19,1.43) 1.39(1.26,
1.54) ¥

1.15(1.11,
1.20)

1.17(1.13,
1.22)

Li+ PGS by decile §R/N        

First (lowest
score)

44/236 1[Reference] 1[Reference]¥ 1[Reference] 1[Reference]

Second 60/237 1.48(0.96,
2.30)

1.59(1.02,
2.49)

0.94(0.79,1.12) 0.96(0.81,1.15)

Third 54/237 1.29(0.82,
2.02)

1.32(0.84,
2.08)

1.07(0.90,1.28) 1.14(0.95,1.35)

Fourth 70/237 1.83(1.19,
2.83)

1.87(1.21,
2.91)

1.09(0.92,1.31) 1.14(0.96,1.36)

Fifth 59/236 1.45(0.94,
2.27)

1.50(0.96,
2.35)

1.12(0.93,1.34) 1.17(0.98,1.40)

Sixth 62/237 1.55(1.00,
2.40)

1.83(1.17,
2.87)

1.22(1.02,1.46) 1.31(1.09,1.55)

Seventh 76/237 2.06(1.35,
3.17)

2.27(1.48,
3.53)

1.15(0.96,1.38) 1.23(1.04,1.48)

Eighth 68/237 1.76(1.14,
2.72)

1.91(1.23,
2.99)

1.12(0.93,1.34) 1.17(0.98,1.39)

Nineth 78/237 2.14(1.41,
3.29)

2.33(1.51,
3.64)

1.45(1.21,1.72) 1.55(1.31,1.86)

Tenth (highest
score)

89/236 2.64(1.74,
4.05)

3.47(2.22,
5.47)

1.52(1.27,1.82) 1.67(1.39,1.99)

Legend: The reference decile (1st decile) is the PGS category with the lowest polygenic load for
lithium variants. OR (95%CI) for the continuous outcome: ALDA total score is calculated as the
exponent of beta coefficient from the linear regression model.

§R/N: number of lithium responders versus total in that decile; ¥ adjusted for age, sex and 4-genetic
principal components, OR: odds ratio.

Insert Table 2 here

Insert Fig. 2 here
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Genome-wide association, gene-based and functional analysis

After re-imputing the ConLi+Gen data in reference to the latest HRC genomes, we conducted GWASs on
lithium response, both in categorical and continuous outcomes. This GWAS analysis identified a single
locus with lead SNP rs9396756 located near the stathmin domain containing 1 (STMND1) gene that
reached genome-wide significance for association with the categorical outcome (P = 2.7 x10− 8) and
showed a suggestive association with the continuous ALDA score (P = 7.6 x10− 8) (Fig. 3). A follow-up
gene-based analysis of the newly derived ConLi+Gen GWAS summary statistics found 36 candidate
genes likely associated with lithium treatment response — assessed in either continuous or categorical
outcomes (P < 0.001). In silico functional analysis of the 36 genes revealed enriched biological pathways
including the muscarinic acetylcholine receptors 1 and 3 (P-value corrected for multiple testing = 0.026)
and metabotropic glutamate receptor group III pathway (P = 0.043). These genes and pathways may have
an impact on clinical response to lithium treatment and be potential molecular targets for lithium
(Supplementary Fig. 1 and Supplementary Table 1).

Insert Fig. 3 here

Insert Supplementary Fig. 1 here

Discussion
This study presents findings from a comprehensive analysis of genetic and clinical data on lithium
treatment response that involved the development of a polygenic score for lithium treatment response
(Li+ PGS), genome-wide SNP association and gene-based and functional analyses.

Since the publication of the first GWAS report by the ConLi+Gen team 10, two landmark studies that
independently showed the negative association of PGSs for SCZ and MD with lithium treatment response
have been published 13–15. The first study found that 10% of bipolar patients with the lowest polygenic
load for SCZ were 3.46 times more responsive to lithium compared to 10% of patients with the highest
genetic load for SCZ 14, 15. Similarly, in the second study, 10% of patients who had the lowest genetic
loading for MD were 1.54 times more responsive to lithium than 10% of patients with the highest genetic
loading for MD 13, 15. Nevertheless, each of these PGSs accounts for < 2% of the total variance to lithium
treatment response 13, suggesting the need to explore additional biological traits that can either
independently, or in concert with existing PGSs better predict lithium response. Moreover, the previous
PGSs for SCZ and MD are difficult to interpret in a pharmacogenomic context, making the development
of a specific lithium response PGS necessary, which is assumed to be more likely to be associated with
lithium treatment response and perhaps is biologically more related to lithium’s pharmacological actions.

In this novel study, we constructed a PGS for lithium response-Li+ PGS, a biological marker of direct
pharmacogenomic relevance, and showed a positive relationship between a high genetic loading for
lithium treatment response variants and long-term therapeutic response to lithium in patients with BD. We



Page 18/29

demonstrated that bipolar patients at the extreme tail end of the distribution have the strongest
association, i.e. 10% of patients who carry high genetic loading for lithium responsive variants (10th
decile) were 3.47 times more likely to respond to lithium compared to 10% of those with the lowest Li+ PGS

(1st decile). These results indicated that Li+ PGS has the potential to help stratify bipolar patients
according to predicted lithium response.

In a GWAS of lithium treatment response, we identified a locus near the STMND1 gene, which encodes for
proteins known to be involved in neuron projection development, and active in neuron junctions and
cytoplasm. Previous analysis that employed the 1000 Genomes Project reference panel for imputation
reported a suggestive association between genetic variants within the STMND1 gene and lithium
treatment response 10.

Using our newly derived ConLi+Gen GWASs summary statistics as an input, we then carried out a gene-
based analysis where several genetic variations were examined together for their association with lithium
treatment response 30. This approach found 36 potential target genes for lithium treatment that are
enriched in the muscarinic acetylcholine receptors (mAChRs) 1 and 3 and the metabotropic glutamate
receptor group III signaling pathways — well characterized biological pathways modulated by the most
abundant neurotransmitters in the brain (glutamate and acetylcholine).

Acetylcholine is the central regulator of the mAChRs signaling pathways, which are subfamily of G
protein-coupled receptor complexes located in the cell membranes of neurons and other cells that
regulate fundamental functions of the central and peripheral nervous system including acting as the
main end-receptor stimulated by acetylcholine released from postganglionic fibers in the
parasympathetic nervous system 32. The muscarinic antagonist scopolamine has antidepressant activity,
while physostigmine, a cholinesterase inhibitor induces depressive symptoms, suggesting muscarinic
receptors may play a role, not only in the pathogenesis of mood disorders, but also as therapeutic targets
33. M1 and 3 receptors are localized in the cortex, hippocampus and substantia nigra and are known to
activate protein kinase C (PKC), causing post-synaptic excitation. PKC is thought to be central in the
molecular pathogenesis of BD.

Glutamate, the primary excitatory neurotransmitter in the central nervous system (CNS), exerts
neuromodulatory actions via the activation of metabotropic glutamate (mGlu), a type of glutamate
receptor that modulates synaptic transmission and neuronal excitability throughout the central nervous
system 34. Group III metabotropic glutamate receptors are largely presynaptically localized and
downregulate neurotransmitter release from presynaptic terminals directly or indirectly. These receptors
have a prominent expression in the brain, especially in the region of the hippocampus, and can lead to the
inhibition of the cAMP cascade which is critical for the maintenance of long-term synaptic plasticity 35.
Growing evidence indicates that abnormalities in the glutamatergic system are implicated in the
pathogenesis and treatment of mental health disorders 36 including BD 37, 38, SCZ 39, neurodevelopmental
disorders 40, Huntington's disease 41 and Alzheimer's disease 42. Studies have reported SNPs of the
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mGluRs system associated with BD 43, and in animal studies, lithium was found to alter intracellular
calcium by modulating the activity of the metabotropic glutamatergic receptor system 44. To summarise,
findings from the genome-wide SNP association, gene-based and functional analysis highlight the
possibility that mechanisms involving glutamate and acetylcholine signaling pathways might influence
the therapeutic effects of lithium in patients with BD. Modulation of these pathways through genetic
variants may disrupt or enhance lithium’s clinical effectiveness.

Our study has some limitations. First, while our findings were replicated in an independent small size
sample, the fact that it was replicated in the binary outcome, but not in the continuous outcome indicates
the need for a larger replication cohort. Second, because Li+ PGS was developed and evaluated in
European-ancestry populations, the findings should be replicated in a multi-ethnic population to gauge
generalizability. Furthermore, the risks and benefits of predictive models consisting of Li+ PGS should be

evaluated in prospective studies. Third, Li+ PGS only explains about 2% of response variance in our cohort,
and as such is comparable to PGSs from other phenotypes (SCZ, MDD) that have shown an association
with treatment outcomes. On their own, these PGSs are not suited to clinical pharmacogenomic testing
as they would not predict treatment response prospectively in individual patients. Prediction models
combining Li+ PGS with other PGSs 13, 14 and clinical characteristics 19, 45 may improve the clinical utility
of PGSs. Such models would then need to be tested in prospective studies and clinical trials. Forth,
studies have shown that approaches to phenotyping of lithium treatment response can be improved
using advanced methods such as machine learning 46. Employing a more precise phenotype definition
may result in the identification of novel candidate genes implicated in lithium treatment response and
ultimately the development of more informative Li+ PGS.

In conclusion, we developed a unique lithium treatment response polygenic score (Li+ PGS) that showed a
positive association with better lithium treatment response in patients with BD. Our gene-based and
functional analyses build upon the findings from existing molecular studies by linking lithium treatment
response with muscarinic acetylcholine receptor signaling and metabotropic glutamate receptor
pathways. Further pharmacological evaluation of these pathways in the context of BD and mood
stabilizing treatments may prove fruitful.

Abbreviations
ConLi+Gen
the International Consortium on Lithium Genetics, ALDA = Retrospective Criteria of Long-Term Treatment
Response in Research Subjects with Bipolar Disorder scale, HRC = Haplotype Reference Consortium
(HRC), SNPs = Single Nucleotide Polymorphisms, MAF = Minor Allele Frequency, GWAS = Genome Wide
Association analysis, Li+ PGS=polygenic score for lithium treatment response, LOG = Leave-one-group out
procedure
PsyCourse
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Pathomechanisms and Signature in the Longitudinal Course of Psychosis study and BipoLife = German
research consortium for the study of bipolar disorder.
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Figure 1

Overview of input datasets and steps of data analyses.

Legend: ConLi+Gen = the International Consortium on Lithium Genetics, ALDA = Retrospective Criteria of
Long-Term Treatment Response in Research Subjects with Bipolar Disorder scale, HRC= Haplotype
Reference Consortium (HRC), SNPs = Single Nucleotide Polymorphisms, MAF=Minor Allele Frequency,
GWAS = Genome Wide Association analysis, Li+PGS = polygenic score for lithium treatment response,
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LOG=Leave-one-group out procedure; PsyCourse = Pathomechanisms and Signature in the Longitudinal
Course of Psychosis study and BipoLife = German research consortium for the study of bipolar disorder.

Figure 2

Trends in the odds ratios (ORs) for favourable treatment response to lithium for patients with bipolar
disorder in the higher genetic loading for lithium responsive variants, deciles (2nd to 10th) compared with
patients in the lowest (decile 1st) of genetic loading for lithium response (n = 2,367).

Legend: The X mark on the line plot indicates that the association is not statistically significant at that
decile.

Abbreviations: OR= odds ratio, CI=Confidence interval, Li+PGS =polygenic score for lithium treatment
response.
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Figure 3

Manhattan plots showing the SNP-based GWAS results of lithium treatment response in patients with
bipolar disorder; A) in the categorical outcome and B) continuous scale, highlighting the loci that showed
genome-wide significance (orange).
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Legend: The −log10 (p-value) is plotted against the physical position of each SNP on each chromosome.
The threshold for genome-wide significance (p-value < 5 × 10–8) is indicated by the red dotted horizontal
line

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

SupplementaryFigureandTable.docx

https://assets.researchsquare.com/files/rs-2580252/v1/0f129f72bfc65d5724db8352.docx

