001005343 001__ 1005343
001005343 005__ 20240712113031.0
001005343 0247_ $$2doi$$a10.4208/cicp.OA-2022-0056
001005343 0247_ $$2ISSN$$a1815-2406
001005343 0247_ $$2ISSN$$a1991-7120
001005343 0247_ $$2Handle$$a2128/34108
001005343 0247_ $$2WOS$$aWOS:000942837100007
001005343 037__ $$aFZJ-2023-01449
001005343 041__ $$aEnglish
001005343 082__ $$a004
001005343 1001_ $$0P:(DE-Juel1)184938$$aGeyer, D.$$b0$$ufzj
001005343 245__ $$aLattice Boltzmann Simulations of Two Linear Microswimmers Using the Immersed Boundary Method
001005343 260__ $$aHong Kong$$bGlobal Science Press$$c2022
001005343 3367_ $$2DRIVER$$aarticle
001005343 3367_ $$2DataCite$$aOutput Types/Journal article
001005343 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678461743_14848
001005343 3367_ $$2BibTeX$$aARTICLE
001005343 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005343 3367_ $$00$$2EndNote$$aJournal Article
001005343 520__ $$aThe performance of a single or the collection of microswimmers stronglydepends on the hydrodynamic coupling among their constituents and themselves. Wepresent a numerical study for a single and a pair of microswimmers based on latticeBoltzmann method (LBM) simulations. Our numerical algorithm consists of two sepa-rable parts. Lagrange polynomials provide a discretization of the microswimmers andthe lattice Boltzmann method captures the dynamics of the surrounding fluid. Thetwo components couple via an immersed boundary method. We present data for asingle swimmer system and our data also show the onset of collective effects and, inparticular, an overall velocity increment of clusters of swimmers.
001005343 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001005343 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005343 7001_ $$0P:(DE-HGF)0$$aZiegler, S.$$b1
001005343 7001_ $$0P:(DE-Juel1)169463$$aSukhov, Alexander$$b2
001005343 7001_ $$0P:(DE-HGF)0$$aHubert, M.$$b3
001005343 7001_ $$0P:(DE-HGF)0$$aSmith, A.-S.$$b4
001005343 7001_ $$0P:(DE-Juel1)169197$$aAouane, O.$$b5$$ufzj
001005343 7001_ $$0P:(DE-Juel1)185890$$aMalgaretti, Paolo$$b6$$ufzj
001005343 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b7$$eCorresponding author$$ufzj
001005343 773__ $$0PERI:(DE-600)2278849-9$$a10.4208/cicp.OA-2022-0056$$gVol. 33, no. 1, p. 310 - 329$$n1$$p310 - 329$$tCommunications in computational physics$$v33$$x1815-2406$$y2022
001005343 8564_ $$uhttps://juser.fz-juelich.de/record/1005343/files/Lattice%20Boltzmann%20Simulations%20of%20Two%20Linear%20Microswimmers%20Using%20the%20Immersed%20Boundary%20Method.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
001005343 8564_ $$uhttps://juser.fz-juelich.de/record/1005343/files/331_310.pdf$$yRestricted$$zStatID:(DE-HGF)0599
001005343 909CO $$ooai:juser.fz-juelich.de:1005343$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005343 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184938$$aForschungszentrum Jülich$$b0$$kFZJ
001005343 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169463$$aForschungszentrum Jülich$$b2$$kFZJ
001005343 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169197$$aForschungszentrum Jülich$$b5$$kFZJ
001005343 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185890$$aForschungszentrum Jülich$$b6$$kFZJ
001005343 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b7$$kFZJ
001005343 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001005343 9141_ $$y2023
001005343 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
001005343 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001005343 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN COMPUT PHYS : 2021$$d2022-11-22
001005343 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001005343 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
001005343 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-22
001005343 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005343 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-22
001005343 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
001005343 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-22$$wger
001005343 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
001005343 920__ $$lyes
001005343 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001005343 9801_ $$aFullTexts
001005343 980__ $$ajournal
001005343 980__ $$aVDB
001005343 980__ $$aUNRESTRICTED
001005343 980__ $$aI:(DE-Juel1)IEK-11-20140314
001005343 981__ $$aI:(DE-Juel1)IET-2-20140314