Hauptseite > Publikationsdatenbank > Lattice Boltzmann Simulations of Two Linear Microswimmers Using the Immersed Boundary Method > print |
001 | 1005343 | ||
005 | 20240712113031.0 | ||
024 | 7 | _ | |a 10.4208/cicp.OA-2022-0056 |2 doi |
024 | 7 | _ | |a 1815-2406 |2 ISSN |
024 | 7 | _ | |a 1991-7120 |2 ISSN |
024 | 7 | _ | |a 2128/34108 |2 Handle |
024 | 7 | _ | |a WOS:000942837100007 |2 WOS |
037 | _ | _ | |a FZJ-2023-01449 |
041 | _ | _ | |a English |
082 | _ | _ | |a 004 |
100 | 1 | _ | |a Geyer, D. |0 P:(DE-Juel1)184938 |b 0 |u fzj |
245 | _ | _ | |a Lattice Boltzmann Simulations of Two Linear Microswimmers Using the Immersed Boundary Method |
260 | _ | _ | |a Hong Kong |c 2022 |b Global Science Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1678461743_14848 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The performance of a single or the collection of microswimmers stronglydepends on the hydrodynamic coupling among their constituents and themselves. Wepresent a numerical study for a single and a pair of microswimmers based on latticeBoltzmann method (LBM) simulations. Our numerical algorithm consists of two sepa-rable parts. Lagrange polynomials provide a discretization of the microswimmers andthe lattice Boltzmann method captures the dynamics of the surrounding fluid. Thetwo components couple via an immersed boundary method. We present data for asingle swimmer system and our data also show the onset of collective effects and, inparticular, an overall velocity increment of clusters of swimmers. |
536 | _ | _ | |a 1232 - Power-based Fuels and Chemicals (POF4-123) |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ziegler, S. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Sukhov, Alexander |0 P:(DE-Juel1)169463 |b 2 |
700 | 1 | _ | |a Hubert, M. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Smith, A.-S. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Aouane, O. |0 P:(DE-Juel1)169197 |b 5 |u fzj |
700 | 1 | _ | |a Malgaretti, Paolo |0 P:(DE-Juel1)185890 |b 6 |u fzj |
700 | 1 | _ | |a Harting, Jens |0 P:(DE-Juel1)167472 |b 7 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.4208/cicp.OA-2022-0056 |g Vol. 33, no. 1, p. 310 - 329 |0 PERI:(DE-600)2278849-9 |n 1 |p 310 - 329 |t Communications in computational physics |v 33 |y 2022 |x 1815-2406 |
856 | 4 | _ | |y OpenAccess |z StatID:(DE-HGF)0510 |u https://juser.fz-juelich.de/record/1005343/files/Lattice%20Boltzmann%20Simulations%20of%20Two%20Linear%20Microswimmers%20Using%20the%20Immersed%20Boundary%20Method.pdf |
856 | 4 | _ | |y Restricted |z StatID:(DE-HGF)0599 |u https://juser.fz-juelich.de/record/1005343/files/331_310.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1005343 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)184938 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)169463 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)169197 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)185890 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)167472 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMMUN COMPUT PHYS : 2021 |d 2022-11-22 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-22 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-22 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-22 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-22 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-11-20140314 |k IEK-11 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-11-20140314 |
981 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|