001005346 001__ 1005346
001005346 005__ 20240712100914.0
001005346 0247_ $$2doi$$a10.5194/acp-23-3103-2023
001005346 0247_ $$2ISSN$$a1680-7316
001005346 0247_ $$2ISSN$$a1680-7324
001005346 0247_ $$2Handle$$a2128/34130
001005346 0247_ $$2WOS$$aWOS:000946215800001
001005346 037__ $$aFZJ-2023-01452
001005346 082__ $$a550
001005346 1001_ $$00000-0003-1083-0609$$aDekoutsidis, Georgios$$b0$$eCorresponding author
001005346 245__ $$aCharacteristics of supersaturation in midlatitude cirrus clouds and their adjacent cloud-free air
001005346 260__ $$aKaltenburg-Lindau$$bEGU$$c2023
001005346 3367_ $$2DRIVER$$aarticle
001005346 3367_ $$2DataCite$$aOutput Types/Journal article
001005346 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678872569_29043
001005346 3367_ $$2BibTeX$$aARTICLE
001005346 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005346 3367_ $$00$$2EndNote$$aJournal Article
001005346 520__ $$aWater vapor measurements of midlatitude cirrus clouds, obtained by the WAter vapour Lidar Experiment in Space (WALES) lidar system during the Mid-Latitude Cirrus (ML-CIRRUS) airborne campaign, which took place in the spring of 2014 over central Europe and the NE Atlantic Ocean, are combined with model temperatures from the European Centre for Medium-Range Weather Forecasts (ECMWF) and analyzed. Our main focus is to derive the distribution and temporal evolution of humidity with respect to ice within cirrus clouds and in their adjacent cloud-free air. We find that 34.1 % of in-cloud data points are supersaturated with respect to ice. Supersaturation is also detected in 6.8 % of the cloud-free data points. When the probability density of the relative humidity over ice (RHi) is calculated with respect to temperature for the in-cloud data points from the ML-CIRRUS dataset, there are two peaks: one around 225 K and close to saturation, RHi = 100 %, and a second one at colder temperatures around 218 K in subsaturation, RHi = 79 %. These two regions seem to represent two cirrus cloud categories: in situ formed and liquid origin. Regarding their vertical structure, most clouds have higher supersaturations close to the cloud top and become subsaturated near the cloud bottom. Finally, we find that the vertical structure of RHi within the clouds is also indicative of their life stage. RHi skewness tends to go from positive to negative values as the cloud ages. RHi modes are close to saturation in young clouds, supersaturated in mature clouds and subsaturated in dissipating clouds.
001005346 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001005346 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005346 7001_ $$00000-0002-7467-9269$$aGroß, Silke$$b1
001005346 7001_ $$00000-0001-5951-2252$$aWirth, Martin$$b2
001005346 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b3
001005346 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b4
001005346 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-23-3103-2023$$gVol. 23, no. 5, p. 3103 - 3117$$n5$$p3103 - 3117$$tAtmospheric chemistry and physics$$v23$$x1680-7316$$y2023
001005346 8564_ $$uhttps://juser.fz-juelich.de/record/1005346/files/acp-23-3103-2023.pdf$$yOpenAccess
001005346 909CO $$ooai:juser.fz-juelich.de:1005346$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005346 9101_ $$0I:(DE-HGF)0$$60000-0003-1083-0609$$a DLR$$b0
001005346 9101_ $$0I:(DE-HGF)0$$60000-0002-7467-9269$$a DLR$$b1
001005346 9101_ $$0I:(DE-HGF)0$$60000-0001-5951-2252$$aDLR$$b2
001005346 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b3$$kFZJ
001005346 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b4$$kFZJ
001005346 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001005346 9141_ $$y2023
001005346 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-19
001005346 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005346 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-19
001005346 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-19
001005346 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005346 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-19
001005346 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001005346 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001005346 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z
001005346 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z
001005346 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z
001005346 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001005346 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001005346 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001005346 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001005346 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001005346 920__ $$lyes
001005346 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
001005346 9801_ $$aFullTexts
001005346 980__ $$ajournal
001005346 980__ $$aVDB
001005346 980__ $$aUNRESTRICTED
001005346 980__ $$aI:(DE-Juel1)IEK-7-20101013
001005346 981__ $$aI:(DE-Juel1)ICE-4-20101013