001005347 001__ 1005347
001005347 005__ 20240625085720.0
001005347 0247_ $$2Handle$$a2128/34323
001005347 037__ $$aFZJ-2023-01453
001005347 041__ $$aEnglish
001005347 1001_ $$0P:(DE-Juel1)179506$$aHilgers, Robin$$b0$$eCorresponding author
001005347 1112_ $$aAPS March Meeting$$cLas Vegas, Nevada$$d2023-03-06 - 2023-03-10$$wUSA
001005347 245__ $$aCurie Temperature Prediction Models of Magnetic Heusler Alloys Using Machine Learning Methods Based on First-Principles Data From Ab-initio KKR-GF Calculations
001005347 260__ $$c2023
001005347 3367_ $$033$$2EndNote$$aConference Paper
001005347 3367_ $$2DataCite$$aOther
001005347 3367_ $$2BibTeX$$aINPROCEEDINGS
001005347 3367_ $$2DRIVER$$aconferenceObject
001005347 3367_ $$2ORCID$$aLECTURE_SPEECH
001005347 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1681976602_22743$$xAfter Call
001005347 500__ $$aAPS was licensed to archive the talk and use the presentation as VOD.
001005347 520__ $$aOrdered and disordered magnetic Heusler alloys are an important class of materials in science and applications. Using Curie temperatures (Tc) of Heusler alloys calculated by the Korringa-Kohn-Rostoker Green function (KKR-GF) method and a subsequent Monte Carlo (MC) approach [1], we trained and evaluated several machine learning models to predict Tc based on atomic, magnetic, and structural properties. We studied multiple descriptor selection methods to determine the most meaningful physical quantities in the given phase space.We compared the performance of regression and classification models in order to predict the range of the Tc of given compounds without performing the MC calculations. Since the MC calculation takes about as many computational resources as the ab-initio calculation, it would be favorable to replace either step with a less computational intensive method as e.g. machine learning. We discuss the necessity to generate the magnetic ab-initio results in order to make a quantitative prediction of the Tc.This work can be seen as a small-scale case study in which lightweight machine learning algorithms can add value to existing ab-initio data and eventually replace costly computational steps in layered calculation workflows in the future.[1] R.  Kovacik et al. (2022),  [10.24435/MATERIALSCLOUD:WW-PV]*This work was performed as part of the Helmholtz School for Data Science in Life, Earth and Energy (HDS-LEE) and received funding from the Helmholtz Association of German Research Centres.
001005347 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001005347 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001005347 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x2
001005347 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
001005347 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b1
001005347 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
001005347 7001_ $$0P:(DE-Juel1)145994$$aKovacik, Roman$$b3
001005347 8564_ $$uhttps://juser.fz-juelich.de/record/1005347/files/Presentation.pdf$$yOpenAccess
001005347 909CO $$ooai:juser.fz-juelich.de:1005347$$pdriver$$pVDB$$popen_access$$popenaire
001005347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179506$$aForschungszentrum Jülich$$b0$$kFZJ
001005347 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)179506$$aRWTH Aachen$$b0$$kRWTH
001005347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich$$b1$$kFZJ
001005347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001005347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145994$$aForschungszentrum Jülich$$b3$$kFZJ
001005347 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001005347 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001005347 9141_ $$y2023
001005347 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005347 920__ $$lyes
001005347 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001005347 9801_ $$aFullTexts
001005347 980__ $$aconf
001005347 980__ $$aVDB
001005347 980__ $$aUNRESTRICTED
001005347 980__ $$aI:(DE-Juel1)IAS-1-20090406
001005347 981__ $$aI:(DE-Juel1)PGI-1-20110106