Curie Temperature Prediction Models of Magnetic Heusler Alloys

Using Machine Learning Methods Based on First-Principles Data From Ab-initio KKR-GF Calculations

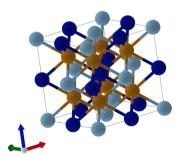
Robin Hilgers, Daniel Wortmann, Stefan Blügel, Roman Kováčik Institute of Advanced Simulation (IAS-1), Forschungszentrum Jülich Department of Physics, RWTH Aachen University Germany

3/7/2023 at APS March Meeting in Las Vegas

Machine-Learning + Materials

Question:

Can we compute complex magnetic material properties easier and faster using Machine-Learning?



Example: Curie-Temperature

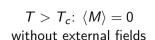
- Major magnetic quantity
- Complex computing (Ab-initio, Exchange params, MC)
- lacksquare Application requires $T_c > T_{Room}$

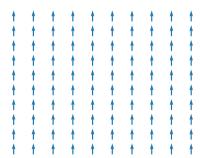
Example material class: Heusler alloys

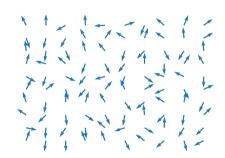
- Subclass of materials
- Structural homogeneity

Curie Temperature

$$T < T_c$$
: $\langle M \rangle = \frac{\sum_i m_i}{V}$







Heuslers

Figure: Heusler structure, from [Kojima et al., 2017]

Heuslers properties:

- Magnetism
- Thermoelectricity
- Superconductivity
- etc.

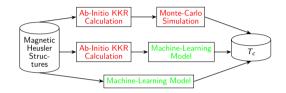
 $\begin{array}{l} X,\ Y \in \text{transition metals} \\ Z \in \text{main-groups 3-5} \end{array}$

Machine Learning

• Computing T_c is very expensive

• Criterion $T_c > T_{Room}$ makes applicability classifiable

 High-Throughput screening possible with ML



The JuHemd Database

DOI: 10.24435/MATERIALSCLOUD:WW-PV

- 776 Systems incl. disordered
- Experimental and theoretical T_c
- Theoretical based on ab-initio + MC
- Publicly available database under CC-by 4.0 [Kováčik et al., 2022]

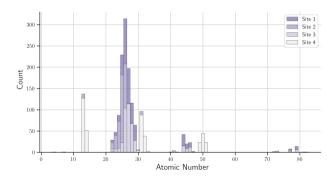


Figure: Distribution of atomic numbers post-processing

Data Properties

- Post-processing: 408 structures
- Visible outlier in T_c
 distribution removed
- 118 possible descriptors:
 - Structural
 - Electronic
 - Magnetic
 - Atomic

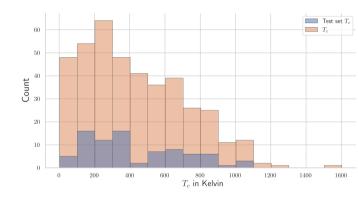
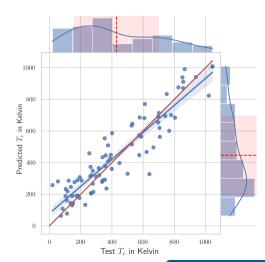


Figure: T_c distributions

Regression

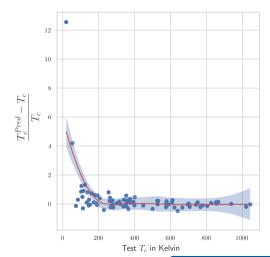
- Extra Trees Regression
- R^2 on test set ≈ 0.85
- Mean prediction deviations \approx 60 K
 - Matches accuracy of DFT + MC approach compared to the experiment
- Linear regression deviates from the ideal (red)



Regression - Residuals

- $T_c < T_{Room}$ are overestimated
 - $T_c < T_{Room}$ is not relevant for application

 Besides that no systematic discrepancies are visible



Classification

■ Using all data β error < 3%

■ Excluding magnetic + energy data from DFT β error $\approx 5\%$

 Structural, electronic and atomic data allows applicability classification

Upcoming publication of all findings and approach details.

Full descriptor set:

Model	CV-Score	Test F1 Score	Test Accuracy
Extra Trees	0.82165	0.90625	0.92683
Logistic Reg.	0.82209	0.86154	0.89024

Descriptors excluding magnetic and energetic DFT results:

Model	CV-Score	Test F1 Score	Test Accuracy
Extra Trees	0.74196	0.83582	0.86585
Logistic Reg.	0.68224	0.75182	0.75362

Feature Importance

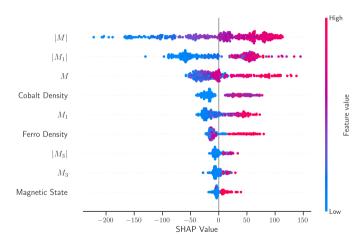
Shapley values originate from a game-theory approach and hence are interpretable. Implemented in the SHAP package [Lundberg et al., 2020]

SHAP is...

- optimized for scikit-learn
- model independent
- capable of visualizing Shapley values

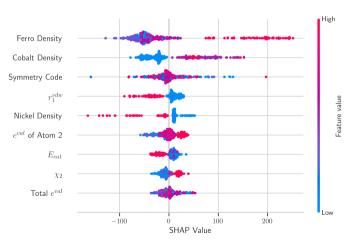
Feature Importance - Including DFT data

- SHAP beeswarm plots display feature values vs Shapley values
- Ordered by impact on prediction
- 9 most impactful all magnetic
- Most impactful: $|M| = \sum_{i} |m_{i}|$



Feature Importance - Without DFT data

- Same approach excluding DFT results
- Three magnetism related:
 - ► n_{Ferro}, n_{Cobalt}, n_{Nickel}
- Special interpretation: Symmetry code
- Surprise: Increased Nickel density has negative impact



Key Takeaways

 Reasonable predictions with small data set

Physical interpretable XAI results

 Materials screening using ML is cheap and fast

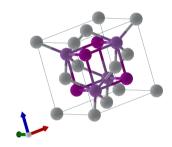


Figure: MnNiSb half-Heusler structure

Acknowledgements

Thank you for your attention!

Contact: r.hilgers@fz-juelich.de

This work was performed as part of the Helmholtz School for Data Science in Life, Earth and Energy (HDS-LEE) and received funding from the Helmholtz Association of German Research Centres

Bibliography

- Kojima, T., Kameoka, S., and Tsai, A.-P. (2017). Heusler alloys: A group of novel catalysts. *ACS Omega*, 2(1):147–153.
- Kováčik, R., Mavropoulos, P., and Blügel, S. (2022).

 The juhemd (jülich-heusler-magnetic-database) of the monte carlo simulated critical temperatures of the magnetic phase transition for experimentally reported heusler and heusler-like materials.
- Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I. (2020).

 From local explanations to global understanding with explainable AI for trees.

 Nature Machine Intelligence, 2(1):56–67.