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Machine-Learning + Materials

Question:
Can we compute complex magnetic

material properties easier and faster using
Machine-Learning?

Figure: FeFeCrAl Heusler structure

Example: Curie-Temperature
� Major magnetic quantity
� Complex computing (Ab-initio,

Exchange params, MC)
� Application requires Tc > TRoom

Example material class: Heusler alloys
� Subclass of materials
� Structural homogeneity
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Curie Temperature

T < Tc : 〈M〉 =
∑

i mi
V

T > Tc : 〈M〉 = 0
without external fields
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Heuslers

Figure: Heusler structure, from
[Kojima et al., 2017]

Heuslers properties:
� Magnetism
� Thermoelectricity
� Superconductivity
� etc.

X, Y ∈ transition metals
Z ∈ main-groups 3-5
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Machine Learning

� Computing Tc is very expensive

� Criterion Tc > TRoom makes
applicability classifiable

� High-Throughput screening possible
with ML

Magnetic
Heusler
Struc-
tures

Ab-Initio KKR
Calculation

Ab-Initio KKR
Calculation

Machine-Learning
Model

Monte-Carlo
Simulation

Tc

Machine-Learning Model
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The JuHemd Database

DOI: 10.24435/MATERIALSCLOUD:WW-PV

� 776 Systems incl. disordered

� Experimental and theoretical
Tc

� Theoretical based on ab-initio
+ MC

� Publicly available database
under CC-by 4.0
[Kováčik et al., 2022] Figure: Distribution of atomic numbers

post-processing
5 / 15



Data Properties

� Post-processing: 408
structures

� Visible outlier in Tc
distribution removed

� 118 possible descriptors:
I Structural
I Electronic
I Magnetic
I Atomic

Figure: Tc distributions
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Regression

� Extra Trees Regression

� R2 on test set ≈ 0.85

� Mean prediction deviations ≈
60 K

I Matches accuracy of DFT +
MC approach compared to
the experiment

� Linear regression deviates from
the ideal (red)

7 / 15



Regression - Residuals

� Tc < TRoom are overestimated
I Tc < TRoom is not relevant

for application

� Besides that no systematic
discrepancies are visible
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Classification

� Using all data β error < 3%

� Excluding magnetic + energy data
from DFT β error ≈ 5%

I Structural, electronic and atomic
data allows applicability
classification

Upcoming publication of all findings and
approach details.

Full descriptor set:

Model CV-Score Test F1 Score Test Accuracy

Extra Trees 0.82165 0.90625 0.92683
Logistic Reg. 0.82209 0.86154 0.89024

Descriptors excluding magnetic and
energetic DFT results:

Model CV-Score Test F1 Score Test Accuracy

Extra Trees 0.74196 0.83582 0.86585
Logistic Reg. 0.68224 0.75182 0.75362
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Feature Importance

Shapley values originate from a
game-theory approach and hence are
interpretable. Implemented in the SHAP
package [Lundberg et al., 2020]

SHAP is...

� optimized for scikit-learn
� model independent
� capable of visualizing Shapley values
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Feature Importance - Including DFT data

� SHAP beeswarm plots
display feature values vs
Shapley values

� Ordered by impact on
prediction

� 9 most impactful all
magnetic

� Most impactful:
|M| =

∑
i |mi |
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Feature Importance - Without DFT data

� Same approach excluding
DFT results

� Three magnetism related:

I nFerro , nCobalt , nNickel

� Special interpretation:
Symmetry code

� Surprise: Increased Nickel
density has negative
impact
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Key Takeaways

� Reasonable predictions with small
data set

� Physical interpretable XAI results

� Materials screening using ML is
cheap and fast

Figure: MnNiSb half-Heusler structure
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