001     1005348
005     20231027114358.0
024 7 _ |a 10.3390/w15061065
|2 doi
024 7 _ |a 2128/34312
|2 Handle
024 7 _ |a WOS:000968353200001
|2 WOS
037 _ _ |a FZJ-2023-01454
041 _ _ |a English
082 _ _ |a 690
100 1 _ |a Al-Tardeh, Sharaf M.
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a In Vitro Assessment of Salinity Stress Impact on Early Growth in Ten Certified Palestinian Barley Cultivars (Hordeum vulgare L.) Potentially Suitable for Cultivation on Former Quarry Substrates
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1681797255_7108
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Salinity is a major constraint for crop health and productivity, particularly on arid, semiarid, and otherwise marginal soils, such as quarry residue. Quarries are a main pillar of national income in Palestine but have a long-lasting toll on the environment. We examined barley (Hordeum vulgare L.), another pillar of the Palestinian economy and one of the most important crops in the world, in this regard for its tolerance to salinity stress. This study is the first to evaluate the impact of salinity (50, 85, 120, and 175 mM NaCl) on seed germination, early growth stage, and morpho-anatomy on ten pre-selected certified Palestinian barley cultivars (Baladi, Improved Baladi, Rihan, ICARDA 1, ICARDA 15, ACSAD 68, ACSAD 176, ACSAD 1417, ACSAD 1732, and ACSAD 1744) to assess their potential for a successful growth start under adverse saline conditions. In addition, soil samples from quarries in Hebron governorate were randomly selected and tested for salinity level, elec-trical conductivity, and total of soluble salts for a first rough overview of options for applying our results, since local data are often scarce or outdated. The examined soil samples reached electrical conductivity (EC) ranges of 1.81 × 10−4–9.071 × 10−4 dS m−1, which are below the normal EC (11–57 × 10−4 dS m−1). This result may contraindicate the hypothesis that quarry lands always suffer from salinity stress. Cultivars such as ACSAD 68 and Icarda 15 proved very sensitive to higher salinity stress with high G50 (time point when 50% of seeds have germinated) at 4.4 d, with 120 mM NaCl (ACSAD 68) or incalculable amounts (Icarda 15) and just 50 and 20% total germination, respec-tively. Concentrations of 175 mM NaCl were found in ACSAD 176 and Improved Baladi (no G50, 37 and 30% germination, respectively). Some cultivars showed a moderate to high resilience to sa-linity, such as ICARDA I, ACSAD 1417, and ACSAD 1744, which reached > 80% seed germination at 120 mM NaCl and >60% at 175 mM NaCl, and G50 within 1.5–2.2 days; the most resilient was ACSAD 1732 with G50 < 2 days and germination still >80% at 175 mM NaCl. This is strongly supported by the monitored growth parameters. In conclusion, ACSAD1732 and Icarda 1 cultivars are highly recommended for cultivation in areas of low precipitation and high salt accumulation. In addition, the land and/or soil of quarries, their landfills, and nearby areas in Palestine may be fit for barley cultivation with recommended cultivars regarding salinity stress.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
700 1 _ |a Alqam, Hala N.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kuhn, Arnd Jürgen
|0 P:(DE-Juel1)129349
|b 2
|u fzj
700 1 _ |a Kuchendorf, Christina
|0 P:(DE-Juel1)159104
|b 3
|e Corresponding author
|u fzj
770 _ _ |a Monitoring, Reclamation and Management of Salt-Affected Lands
|z ISSN 2073-4441
773 _ _ |a 10.3390/w15061065
|0 PERI:(DE-600)2521238-2
|p 1065
|t Water
|v 15
|y 2023
|x 2073-4441
856 4 _ |u https://juser.fz-juelich.de/record/1005348/files/water-15-01065.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005348
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129349
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159104
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:05:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:05:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:05:06Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER-SUI : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21