001     1005353
005     20240625095120.0
024 7 _ |a 10.1016/j.celrep.2023.112059
|2 doi
024 7 _ |a 2211-1247
|2 ISSN
024 7 _ |a 2639-1856
|2 ISSN
024 7 _ |a 2128/34128
|2 Handle
024 7 _ |a 36729833
|2 pmid
024 7 _ |a WOS:000927805600001
|2 WOS
037 _ _ |a FZJ-2023-01456
082 _ _ |a 610
100 1 _ |a Ortiz, Cristina
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Neprilysin-dependent neuropeptide Y cleavage in the liver promotes fibrosis by blocking NPY-receptor 1
260 _ _ |a [New York, NY]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1678872384_11302
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Development of liver fibrosis is paralleled by contraction of hepatic stellate cells (HSCs), the main profibrotic hepatic cells. Yet, little is known about the interplay of neprilysin (NEP) and its substrate neuropeptide Y (NPY), a potent enhancer of contraction, in liver fibrosis. We demonstrate that HSCs are the source of NEP. Importantly, NPY originates majorly from the splanchnic region and is cleaved by NEP in order to terminate contraction. Interestingly, NEP deficiency (Nep−/−) showed less fibrosis but portal hypertension upon liver injury in two different fibrosis models in mice. We demonstrate the incremental benefit of Nep−/− in addition to AT1R blocker (ARB) or ACE inhibitors for fibrosis and portal hypertension. Finally, oral administration of Entresto, a combination of ARB and NEP inhibitor, decreased hepatic fibrosis and portal pressure in mice. These results provide a mechanistic rationale for translation of NEP-AT1R-blockade in human liver fibrosis and portal hypertension.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Klein, Sabine
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Reul, Winfried H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Magdaleno, Fernando
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gröschl, Stefanie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dietrich, Peter
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schierwagen, Robert
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Uschner, Frank E.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Torres, Sandra
|0 0000-0002-2894-3188
|b 8
700 1 _ |a Hieber, Christoph
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Meier, Caroline
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kraus, Nico
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Tyc, Olaf
|0 0000-0001-9949-0975
|b 12
700 1 _ |a Brol, Maximilian
|0 0000-0003-2879-7560
|b 13
700 1 _ |a Zeuzem, Stefan
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Welsch, Christoph
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Poglitsch, Marco
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Hellerbrand, Claus
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Alfonso-Prieto, Mercedes
|0 P:(DE-Juel1)169976
|b 18
|u fzj
700 1 _ |a Mira, Fabio
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Keller, Ulrich auf dem
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Tetzner, Anja
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Moore, Andrew
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Walther, Thomas
|0 0000-0002-6725-4473
|b 23
700 1 _ |a Trebicka, Jonel
|0 0000-0002-7028-3881
|b 24
|e Corresponding author
773 _ _ |a 10.1016/j.celrep.2023.112059
|g Vol. 42, no. 2, p. 112059 -
|0 PERI:(DE-600)2649101-1
|n 2
|p 112059
|t Cell reports
|v 42
|y 2023
|x 2211-1247
856 4 _ |u https://juser.fz-juelich.de/record/1005353/files/1-s2.0-S2211124723000700-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005353
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)169976
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-17
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-17
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:49:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:49:39Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:49:39Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP : 2022
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21