001     1005359
005     20240711113810.0
024 7 _ |a 10.1016/j.fusengdes.2023.113530
|2 doi
024 7 _ |a 0920-3796
|2 ISSN
024 7 _ |a 1873-7196
|2 ISSN
024 7 _ |a 2128/34113
|2 Handle
024 7 _ |a WOS:000954399400001
|2 WOS
037 _ _ |a FZJ-2023-01462
082 _ _ |a 530
100 1 _ |a Nietiadi, Y.
|0 0000-0002-3471-8569
|b 0
|e Corresponding author
245 _ _ |a Thermomechanical analysis of a multi-reflectometer system for DEMO
260 _ _ |a New York, NY [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1678773929_3542
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Microwave reflectometry systems are currently considered as a possible solution for plasma position and control, in DEMO. The primary integration approach for this diagnostic involves the incorporation of several groups of antennas and waveguides into a diagnostics slim cassette (DSC), a full 20–25 cm thick poloidal sector dedicated to diagnostics. Since the passive front-end components of the reflectometry system (antennas and WGs) will be directly exposed to the plasma, an effective cooling system is required to keep the operating temperatures below the limits established for the DSC materials under neutron irradiation. Furthermore, the mechanical stresses experienced by the DSC should not jeopardize its structural integrity. In this work, the temperature distributions of a DSC segment with an updated cooling system design were estimated with a coupled steady-state thermal analysis performed with ANSYS Mechanical and ANSYS CFX, using the system-coupling module of ANSYS Workbench. It was found that the maximum temperature obtained in the DSC could be below the limits if the antennas are made of tungsten. These results were used as input in structural analysis, which has shown that the structure of the designed DSC fulfils the level-A requirements of RCC-MR for Immediate Plastic Collapse (IPC), Immediate Plastic Instability (IPI), and Immediate Plastic Flow Localization (IPFL).
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Luís, R.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Silva, A.
|0 P:(DE-Juel1)166322
|b 2
700 1 _ |a Belo, J. H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vale, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Malaquias, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gonçalves, B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a da Silva, F.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Santos, J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ricardo, E.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Biel, W.
|0 P:(DE-Juel1)129967
|b 10
773 _ _ |a 10.1016/j.fusengdes.2023.113530
|g Vol. 190, p. 113530 -
|0 PERI:(DE-600)1492280-0
|p 113530 -
|t Fusion engineering and design
|v 190
|y 2023
|x 0920-3796
856 4 _ |u https://juser.fz-juelich.de/record/1005359/files/1-s2.0-S092037962300114X-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005359
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)129967
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-11
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUSION ENG DES : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21